支承构件刚度对双向板内力的影响

《支承构件刚度对双向板内力的影响》由会员分享,可在线阅读,更多相关《支承构件刚度对双向板内力的影响(27页珍藏版)》请在文档大全上搜索。
1、 2015.4.2 支承构件刚度对双向板内力的影响支承构件刚度对双向板内力的影响Page 2基本方程基本方程支承构件刚度为支承构件刚度为 0支承构件刚度无限大支承构件刚度无限大弯矩分布随支承构件抗弯刚度的变化程度弯矩分布随支承构件抗弯刚度的变化程度Page 3一、基本方程一、基本方程弹性薄板的内力可表示为:式中,为材料的横向变形系数或泊松比,混凝土为1/6;B为板的弯曲刚度, 12(1- 2);为中面挠度,需满足: 以及相应的边界条件。Page 4一、基本方程一、基本方程l对于对于左图左图所示受均布荷载的矩形板,两对所示受均布荷载的矩形板,两对边简支,另外两对边弹性支承板,可采用边简支,另外两
2、对边弹性支承板,可采用单级数的李维解单级数的李维解:式中,常数式中,常数 、 由由 的边界条件的边界条件确定。确定。Page 5一、基本方程一、基本方程n忽略支承梁的抗扭刚度,得到边界条件一,支承边板的弯矩为忽略支承梁的抗扭刚度,得到边界条件一,支承边板的弯矩为0,即:,即:n支承边板的挠度等于支承梁的挠度;支承边板的剪力等于支承梁的分布荷载。设支承支承边板的挠度等于支承梁的挠度;支承边板的剪力等于支承梁的分布荷载。设支承梁的抗弯刚度为,边界条件二可以表示为:梁的抗弯刚度为,边界条件二可以表示为:n令:令: ,Page 6一、基本方程一、基本方程n由条件一方程(由条件一方程(A):):Page
3、 7一、基本方程一、基本方程n由条件二方程(由条件二方程(B):):Page 8一、基本方程一、基本方程n联立方程(联立方程(C)、()、(D-1)可求得:)可求得: 其中,m=1,3,5, (E) 联立方程(联立方程(C-1)、()、(D-2)可求得:)可求得: 令:令:Page 9一、基本方程一、基本方程nx方向跨中弯矩方向跨中弯矩 : (G)ny方向跨中弯矩:方向跨中弯矩: (H)Page 10一、基本方程一、基本方程MxMy弯矩随惯性矩变化图像弯矩随惯性矩变化图像Page 11二、支承构件刚度为二、支承构件刚度为 0n当支承构件的线刚度为当支承构件的线刚度为0时,相当于对边简支单向板(
4、即两对边简支、另两边为自由时,相当于对边简支单向板(即两对边简支、另两边为自由边)。在式(边)。在式(D)中令,联立方程()中令,联立方程(C)、()、(D),可求得:),可求得: (F-1)n跨中弯矩的表示式仍然为式(跨中弯矩的表示式仍然为式(G)和()和(H)。两个方向跨中弯矩随跨度比)。两个方向跨中弯矩随跨度比a/b的变化情的变化情况如况如下图下图所示,图中纵坐标为。板跨方向(简支边方向)的跨中弯矩系数几乎不受跨所示,图中纵坐标为。板跨方向(简支边方向)的跨中弯矩系数几乎不受跨度比影响,接近简支梁跨中弯矩;而板宽方向(自由边方向)的跨中弯矩系数随跨度度比影响,接近简支梁跨中弯矩;而板宽方
5、向(自由边方向)的跨中弯矩系数随跨度比的增加而下降,最大值为比的增加而下降,最大值为 。Page 12(a)板跨方向(Page 13二、支承构件刚度为二、支承构件刚度为 0自由边方向的弯矩是由横向变形引起的,所以与泊松比有关。左边图是不同值时,板宽方向跨 中弯矩随跨度比a/b的变化情况,图中纵坐标为 。如果 时,由式(F-1), ;由式(H), 。x泊松比泊松比y泊松比泊松比Page 14二、支承构件刚度为二、支承构件刚度为 0从从上图上图可以可以发现发现,当,当 a/b大大于于3时,弯矩系数基本趋于稳时,弯矩系数基本趋于稳定。定。可见,板宽越大,对边简支可见,板宽越大,对边简支单向板垂直受力
6、方向的跨中单向板垂直受力方向的跨中弯矩越大,最大值为受力方弯矩越大,最大值为受力方向跨中弯矩值的倍;最小值向跨中弯矩值的倍;最小值稳定在以板宽为跨度的简支稳定在以板宽为跨度的简支梁跨中弯矩的一定比例。梁跨中弯矩的一定比例。横向变形引起弯矩是在横向变形引起弯矩是在钢筋混凝土单向板中垂钢筋混凝土单向板中垂直受力方向必须配置构直受力方向必须配置构造钢筋的原因之一(其造钢筋的原因之一(其他两个原因是抵抗温度他两个原因是抵抗温度应力及固定受力钢筋)。应力及固定受力钢筋)。混凝土的值为混凝土的值为1/6,故,故混凝土结构设计规范混凝土结构设计规范(GB 50010-2002)要)要求垂直应力方向的构造求垂
7、直应力方向的构造钢筋面积不少于受力钢钢筋面积不少于受力钢筋面积的筋面积的15%。 Page 15三、支承构件抗弯刚度无限大三、支承构件抗弯刚度无限大n当支承梁线刚度与板抗弯刚度的比值时,相当于四边简支板。在式当支承梁线刚度与板抗弯刚度的比值时,相当于四边简支板。在式(F)中令,可得到中令,可得到n跨中弯矩的表示式仍然为式(跨中弯矩的表示式仍然为式(G)和()和(H)。两个方向的跨中弯矩随跨度比)。两个方向的跨中弯矩随跨度比a/b的变化的变化情况如图情况如图2-9所示,图中纵坐标为随着跨度比的增加,短跨向弯矩越来越大;长跨方向所示,图中纵坐标为随着跨度比的增加,短跨向弯矩越来越大;长跨方向弯矩越