空间数据的拓扑关系.docx
上传者:zhangshut
2022-06-01 09:18:22上传
DOCX文件
125 KB
空间数据的拓扑关系
1、空间数据的拓扑关系
地理信息系统同其它一些事务信息处理系统如银行管理系统,图书检索系统的主要区别在于地理信息系统中具有大量几何目标信息。这些几何目标信息还包含两类信息,一类就是目标本身的位置信息;另一类就是地物间的空间关系信息。如果忽略几何目标间的空间关系信息,那么从数据结构的角度瞧,地理信息系统的数据结构就可以设计成通常事务信息处理系统的形式。也就就是说,由于地理信息系统必须同时考虑几何目标的空间关系、地物位置信息及特征信息,致使地理信息系统的数据结构比较复杂。为了研究几何目标的空间关系,在此引入拓扑关系的概念。
2、拓扑的基本概念
几何信息与拓扑关系就是地理信息系统中描述地理要素的空间位置与空间关系的不可缺少的基本信息。其中几何信息主要涉及几何目标的坐标位置、方向、角度、距离与面积等信息,它通常用解析几何的方法来分析。而空间关系信息主要涉及几何关系的“相连”、“相邻”、“包含”等信息,它通常用拓扑关系或拓扑结构的方法来分析。拓扑关系就是明确定义空间关系的一种数学方法。在地理信息系统中用它来描述并确定空间的点、线、面之间关系及属性,并可实现相关的查询与检索。从拓扑观点出发,关心的就是空间的点、线、面之间的联接关系,而不管实际图形的几何形状。因此,几何形状相差很大的图形,它们的拓扑结构却可能相同。
图3-4(a)(b)所表示的图,其儿何形状不同,但它们结点间拓扑关系就是相同的,均可川图3-4(c)所示结点邻接矩阵表示。(c)中交点为1处表示相应纵横两结点相连。
a
b
c
d
e
在
—
1
Q
0
1
b
1
-
1
0
1
C
0
1
-
1
0
d
0
0
1
.
1
e
1
1
Q
1
.
(C)
因3-4结点之间拓扑关系
同样,图3-5(a)(b)所表示的图,其儿何形状完全不同,但各面块之间的拓扑邻接关系完全相同,如图3-5(c)邻接矩阵所示,(c)中交点为1处表示相应的两个面相邻。
囱3-5面块之间拓扑关系
&
b
c
d
a
-
1
0
1
b
1
■
1
1
c
0
1
■
1
d
1
1
1
-
总之,拓扑关系反映了空间实体之间的逻辑关系,它不需要坐标、距离信息,不受比例尺限制,也不随投影关系变化。因此,在地理信息系统中,了解拓扑关系对空间数据的组织,空间数据的分析与处理都具有非常重要的意义。
3.空间数据的拓扑关系
空间数据拓扑关系的表示方法主襄有下述几种:
一、拓扑关联性
拓扑关联性表示空间图形中不同类型元素,如结点、弧段及多边形之间的拓扑关系。如图3-6(a)所示的图形,具有多边形与弧段之间的关联性Pl/al,a5,a6;P2/a2,al,a6等,如图3-6(b)所示、也有弧段与结点之间的关联性,Nl/al,a3,a5,N2/al,a6,a2等。即从图形的拓扑关联性出发,图3-6(0)可用如图3-6(b),(c)所示的关联表来表示。
用关联表来表示图的优点就是每条弧段所包含的坐标数据点只需存储一次,如果不考虑它们之间关联性而以每个多边形的全部封闭弧段的坐标点来存储数据,不仅数据量大,还无法反映空间关系。
多边形寻
弧段目
1、空间数据的拓扑关系
地理信息系统同其它一些事务信息处理系统如银行管理系统,图书检索系统的主要区别在于地理信息系统中具有大量几何目标信息。这些几何目标信息还包含两类信息,一类就是目标本身的位置信息;另一类就是地物间的空间关系信息。如果忽略几何目标间的空间关系信息,那么从数据结构的角度瞧,地理信息系统的数据结构就可以设计成通常事务信息处理系统的形式。也就就是说,由于地理信息系统必须同时考虑几何目标的空间关系、地物位置信息及特征信息,致使地理信息系统的数据结构比较复杂。为了研究几何目标的空间关系,在此引入拓扑关系的概念。
2、拓扑的基本概念
几何信息与拓扑关系就是地理信息系统中描述地理要素的空间位置与空间关系的不可缺少的基本信息。其中几何信息主要涉及几何目标的坐标位置、方向、角度、距离与面积等信息,它通常用解析几何的方法来分析。而空间关系信息主要涉及几何关系的“相连”、“相邻”、“包含”等信息,它通常用拓扑关系或拓扑结构的方法来分析。拓扑关系就是明确定义空间关系的一种数学方法。在地理信息系统中用它来描述并确定空间的点、线、面之间关系及属性,并可实现相关的查询与检索。从拓扑观点出发,关心的就是空间的点、线、面之间的联接关系,而不管实际图形的几何形状。因此,几何形状相差很大的图形,它们的拓扑结构却可能相同。
图3-4(a)(b)所表示的图,其儿何形状不同,但它们结点间拓扑关系就是相同的,均可川图3-4(c)所示结点邻接矩阵表示。(c)中交点为1处表示相应纵横两结点相连。
a
b
c
d
e
在
—
1
Q
0
1
b
1
-
1
0
1
C
0
1
-
1
0
d
0
0
1
.
1
e
1
1
Q
1
.
(C)
因3-4结点之间拓扑关系
同样,图3-5(a)(b)所表示的图,其儿何形状完全不同,但各面块之间的拓扑邻接关系完全相同,如图3-5(c)邻接矩阵所示,(c)中交点为1处表示相应的两个面相邻。
囱3-5面块之间拓扑关系
&
b
c
d
a
-
1
0
1
b
1
■
1
1
c
0
1
■
1
d
1
1
1
-
总之,拓扑关系反映了空间实体之间的逻辑关系,它不需要坐标、距离信息,不受比例尺限制,也不随投影关系变化。因此,在地理信息系统中,了解拓扑关系对空间数据的组织,空间数据的分析与处理都具有非常重要的意义。
3.空间数据的拓扑关系
空间数据拓扑关系的表示方法主襄有下述几种:
一、拓扑关联性
拓扑关联性表示空间图形中不同类型元素,如结点、弧段及多边形之间的拓扑关系。如图3-6(a)所示的图形,具有多边形与弧段之间的关联性Pl/al,a5,a6;P2/a2,al,a6等,如图3-6(b)所示、也有弧段与结点之间的关联性,Nl/al,a3,a5,N2/al,a6,a2等。即从图形的拓扑关联性出发,图3-6(0)可用如图3-6(b),(c)所示的关联表来表示。
用关联表来表示图的优点就是每条弧段所包含的坐标数据点只需存储一次,如果不考虑它们之间关联性而以每个多边形的全部封闭弧段的坐标点来存储数据,不仅数据量大,还无法反映空间关系。
多边形寻
弧段目
空间数据的拓扑关系