1. 首页
  2. 文档大全

正余弦定理应用

上传者:20****2 2022-06-12 16:51:53上传 PPT文件 768.01KB
正余弦定理应用_第1页 正余弦定理应用_第2页 正余弦定理应用_第3页

《正余弦定理应用》由会员分享,可在线阅读,更多相关《正余弦定理应用(38页珍藏版)》请在文档大全上搜索。

1、回顾回顾(1)三角形常用公式:)三角形常用公式:(2)正弦定理应用范围:)正弦定理应用范围: 已知已知两角和任意边两角和任意边,求其他两边和一角,求其他两边和一角 已知已知两边和其中一边的对角两边和其中一边的对角,求另一边,求另一边的对角。的对角。(注意解的情况注意解的情况)正弦定理:正弦定理:ABC111sinsinsin222ABCSabCbcAacBsinsinsinabcABC2R(3)、余弦定理)、余弦定理:三角形任何一边的平方等于其三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积他两边平方的和减去这两边与它们夹角的余弦的积的两倍。的两倍。Cabbaccos22

2、22Abccbacos2222Baccabcos2222bcacbA2cos222cbcaBa2cos222 abcbaC2cos222(4 4)、余弦定理可以解决以下两类有关三角形问题:)、余弦定理可以解决以下两类有关三角形问题:(1 1)已知三边求三个角;)已知三边求三个角;(2 2)已知两边和它们的夹角,求第三边和其他两个角。)已知两边和它们的夹角,求第三边和其他两个角。有关测量术语有关测量术语: :a.仰角和俯角仰角和俯角是指与目标视线在同一垂直平是指与目标视线在同一垂直平面内的水平视线的夹角面内的水平视线的夹角.其中目标视线在水平其中目标视线在水平视线的目标视线上方时叫仰角视线的目标

3、视线上方时叫仰角,目标视线在水目标视线在水平视线的下方的时叫俯角平视线的下方的时叫俯角.b.方向角方向角是指从指定方向线到目标方向线的是指从指定方向线到目标方向线的水平角水平角,如北偏东如北偏东300,南偏西南偏西450.c.方位角方位角是指从正北方向是顺时针旋转到目是指从正北方向是顺时针旋转到目标方向线的水平角标方向线的水平角.d.坡度坡度是坡面与水平面所成的角的度数是坡面与水平面所成的角的度数.测量测量距离距离问题问题如图如图,设设A,B两点在河的两岸两点在河的两岸.需要测量需要测量A,B两点间两点间的距离的距离,测量者在测量者在A的同侧河岸边选定一点的同侧河岸边选定一点C.测出测出AC=

4、55米米,, 求求A,B两两点间的距离点间的距离.75ACBBCA BAC=45 ,如图如图,隔河看两目标隔河看两目标A、B,但不能到达,但不能到达,在岸边选取相距在岸边选取相距 千米的千米的C、D两点,两点,并测得并测得ACB=750,BCD=450,ADC=300,ADB=450(A、B、C、D在同一平面在同一平面),求两目标求两目标AB之间的距离。之间的距离。3ABCD一一ABCD一海轮以一海轮以20n mile/h的速度向正东航行的速度向正东航行,它在它在A点测得灯塔点测得灯塔P在船的北在船的北600东东,2个小时个小时后船到达后船到达B点时点时,测得灯塔在船的北测得灯塔在船的北450

5、东东,求求(1)船在船在B点时与灯塔点时与灯塔P的距离的距离.(2)已知以已知以P为圆心为圆心,55n mile的半径的圆形水的半径的圆形水域内有暗礁域内有暗礁,那么船工继续向正东航行那么船工继续向正东航行,有无有无触礁的危险触礁的危险.练习二练习二 某货轮在某货轮在A处看灯塔处看灯塔S在北偏东在北偏东30方向方向.它以它以每小时每小时36海里的速度向正北方向航行海里的速度向正北方向航行,经过经过40分钟航行到分钟航行到B处看灯塔处看灯塔S在北偏东在北偏东75方向方向.求求此时货轮到灯塔此时货轮到灯塔S的距离的距离.练习三练习三16.97海里练习四练习四12ABAB10 201202如图,甲船

6、以每小时30海里的速度向正北方向航行,乙船按固定方向向匀速直线航行。当甲船位于处时,乙船位于甲船的北偏西105 方向的处,此时两船相距20海里,当甲船航行20分钟到达处时,乙船航行到甲船的北偏西120 方向的处,此时两船相距海里,问乙船每小时航行多少海里?302海里如图,货轮在海上以如图,货轮在海上以40n mile/h的速度由的速度由B向向C航行,航行的方位角航行,航行的方位角140 ,在,在B处测处测得得A处有灯塔,其方位角处有灯塔,其方位角110 ,在,在C处观处观察灯塔察灯塔A的方位角的方位角35 ,由,由B到到C需需0.5h航航行,求行,求C到灯塔到灯塔A的距离。的距离。10 610

7、 2AC 练习五练习五某人在高出海面某人在高出海面600m的山上的山上P处,测处,测得海面上的航标得海面上的航标A在正东,俯角为在正东,俯角为30,航标,航标B在南偏东在南偏东60,俯角为,俯角为45 ,求这两个航标间的距离。,求这两个航标间的距离。WNES4530PCBA练习六练习六(1)准确地理解题意;)准确地理解题意;(2)正确地作出图形;)正确地作出图形;(3)把已知和要求的量尽量集中在有关三)把已知和要求的量尽量集中在有关三角形中,利用正弦定理和余弦定理有顺角形中,利用正弦定理和余弦定理有顺序地解这些三角形;序地解这些三角形;()再根据实际意义和精确度的要求给出()再根据实际意义和精


文档来源:https://www.renrendoc.com/paper/212619336.html

文档标签:

下载地址