桁架弹塑性分析



《桁架弹塑性分析》由会员分享,可在线阅读,更多相关《桁架弹塑性分析(26页珍藏版)》请在文档大全上搜索。
1、2.4 拉伸和压缩杆系的弹塑性分析弹性极限载荷(屈服载荷):弹性极限载荷(屈服载荷):结构出现塑性变形时的载荷结构出现塑性变形时的载荷塑性极限载荷(极限载荷):塑性极限载荷(极限载荷):使整个结构屈服,从而丧失使整个结构屈服,从而丧失 承载能力时的载荷承载能力时的载荷理想弹塑性材料理想弹塑性材料,signsssE当时,当时,oss以一次超静定三杆桁架为例进行弹塑性分析以一次超静定三杆桁架为例进行弹塑性分析PABCD132l 解:解:在载荷在载荷P 较小时,杆系处于弹较小时,杆系处于弹性状态,各杆轴力为:性状态,各杆轴力为:已知:三杆材料相同,弹性模量均为已知:三杆材料相同,弹性模量均为E;横截
2、面积相同,均为横截面积相同,均为A,l1=l3,l2=l,试试讨论杆系的极限载荷和讨论杆系的极限载荷和A点的铅垂位移点的铅垂位移。PAF1F3F23231cos21cosPFF32cos21PF312FFF载荷增加时,杆载荷增加时,杆2首先屈服,此时首先屈服,此时2s,1、3杆仍处于弹性状态。杆仍处于弹性状态。屈服载荷屈服载荷Pe:超静定结构超静定结构静定结构静定结构PABCD13l sA继续加载,杆继续加载,杆1、3也达到屈服,结构丧失承载能力。也达到屈服,结构丧失承载能力。极限载荷极限载荷Pl:32cos21esPAF)cos21 (3APsecos231APFFs)cos21 (APsl
3、3cos21cos21elPPA点位移点位移分析分析P小于或等于小于或等于Pe时,时,当当Pe PPl时,时,)cos21 (322EAPllElylEsyeEllsscos/131lElsyl21coscos2cos1/yeyllEAAPlEllsy321111cos2coscoscosP=Pl时时l 当当PPPPe e时,时,三杆处于弹性状态,结构的刚度比较大;三杆处于弹性状态,结构的刚度比较大;l 当当P Pe ePPP0ipirirE/由于由于 水平加载水平加载QFFsinsin310coscos231FFF平衡方程平衡方程几何协调几何协调sin31xllABCDQ物理方程物理方程ii
4、illEAF/02l 水平加载水平加载ABCDQ, 0 ,sin2/231FQFF0 ,sin2/231AQesQAQsin2当杆杆1和和3进入塑性变形状态进入塑性变形状态由于杆由于杆2始终不受力,此时继续加载,变形无限制。故始终不受力,此时继续加载,变形无限制。故elQQ )cossin2/(sin/21EAQllx)cossin/(Elsxsin/1lsx 不同加载路径的影响不同加载路径的影响路径路径1:路径路径2:加竖向载荷至极限状态,保持竖向位移不变,再加水平载荷至极限状态加竖向载荷至极限状态,保持竖向位移不变,再加水平载荷至极限状态水平载荷和竖向载荷成比例加载至极限状态水平载荷和竖向
5、载荷成比例加载至极限状态ABCDPABCDAxlylyl加载步1加载步2ABCDFsin2tan路径路径1:中间态由前述分析,知:中间态由前述分析,知,321slEsyl2cos对加载步2,如果可实现,则必然存在竖向卸载必然存在竖向卸载。设此过程中竖向载荷增量为 ,水平载荷增量为 ,相应地各杆应变增量为 ,应力增量为 PQ321,321,平衡方程:AQ/sinsin31AP/coscos231几何关系:cossincos/1yxlyl2cossincos/3yxl在加载步在加载步2过程中,过程中,A点竖向位移不变,则点竖向位移不变,则0y,cossin31xll02而而 ,这说明在此过程中,杆
6、,这说明在此过程中,杆1和和2仍处于塑性状态,只仍处于塑性状态,只有杆有杆3卸载卸载, 所以所以0 x, 021,/sin3AQAP/cos3,sin/sin/3AQAQcotQP,sin/,321AQss当当 ,杆,杆3进入反向屈服,进入反向屈服,s3sin2AQsl)cossin/(2EAQlx)cossin/(2Elsxl最终态为最终态为s321cossin2Elsxl,cos2lEsylEllsylxl3coscossin2122cosElsylEllsylxl23coscossinsin2AQsfAPPPslf路径路径2平衡方程QFFFsinsinsin31PFFFFcoscosco