经典第4章.一元流体动力学基础ppt

《经典第4章.一元流体动力学基础ppt》由会员分享,可在线阅读,更多相关《经典第4章.一元流体动力学基础ppt(127页珍藏版)》请在文档大全上搜索。
1、第三章第三章 一元流体动力学基础一元流体动力学基础 流体运动学研究流体的运动规律,如速度、流体运动学研究流体的运动规律,如速度、加速度等运动参数的变化规律,而流体动力学加速度等运动参数的变化规律,而流体动力学则研究流体在外力作用下的运动规律则研究流体在外力作用下的运动规律,即流体的即流体的运动参数与所受力之间的关系。运动参数与所受力之间的关系。 本章主要介绍本章主要介绍流体运动学和流体动力学的流体运动学和流体动力学的基本知识基本知识,推导出流体动力学中的几个重要的基推导出流体动力学中的几个重要的基本方程:本方程:连续性方程、动量方程和能量方程连续性方程、动量方程和能量方程,这这些方程是分析流体
2、流动问题的基础。些方程是分析流体流动问题的基础。本章导读本章导读一、流场的概念一、流场的概念 流体是由无限多的连续分布的流体质点所组成,流流体是由无限多的连续分布的流体质点所组成,流体的运动一般都是在固体壁面所限制的空间内外进行的。体的运动一般都是在固体壁面所限制的空间内外进行的。例如,室内空气的流动、室外大气的绕流、管道中水、蒸例如,室内空气的流动、室外大气的绕流、管道中水、蒸气或煤气的流动等,都是在建筑物的墙壁、管道的管壁等气或煤气的流动等,都是在建筑物的墙壁、管道的管壁等固体壁面所限制的空间内外进行的。因此,流体在流动过固体壁面所限制的空间内外进行的。因此,流体在流动过程中将连续地占据这
3、些空间。我们程中将连续地占据这些空间。我们把流体流动所占据的全把流体流动所占据的全部空间称为部空间称为流场流场。流体力学的主要任务就是研究流场中流流体力学的主要任务就是研究流场中流体的运动规律。体的运动规律。第一节第一节 描述流体运动的两种方法描述流体运动的两种方法1.拉格朗日方法拉格朗日方法(lagrangian method)是以流场中每是以流场中每一流体质点作为描述流体运动的方法,它以流体个别一流体质点作为描述流体运动的方法,它以流体个别质点随时间的运动为基础,通过综合足够多的质点质点随时间的运动为基础,通过综合足够多的质点(即质点系)运动求得整个流动。(即质点系)运动求得整个流动。质点
4、系法质点系法研究对象:研究对象:流体质点流体质点空间坐标空间坐标tcbazztcbayytcbaxx,(a,b,c)为)为t=t0起始时刻质点所在的空间位置坐标,起始时刻质点所在的空间位置坐标,称为称为拉格朗日数拉格朗日数。 所以,任何质点在空间的位置(所以,任何质点在空间的位置(x,y,z)都可看)都可看作是(作是(a,b,c)和时间)和时间t的函数。的函数。(2)(a,b,c)为变数)为变数,t =const,可以得,可以得出某一瞬间不同质点在空间的分布情况。出某一瞬间不同质点在空间的分布情况。 (1)(a,b,c)=const ,t 为变数,可以为变数,可以得出某个指定质点在任意时刻所处
5、的位置。得出某个指定质点在任意时刻所处的位置。ttcbazvttcbayvttcbaxvzyx,222222ttcbaztvattcbaytvattcbaxtvazzyyxx,流体质点的其它流动参量可以类流体质点的其它流动参量可以类似地表示为似地表示为a、b、c和和 t 的函数。的函数。如:如: p=p(a,b,c,t)=(a,b,c,t) 由于流体质点的运动轨迹非常由于流体质点的运动轨迹非常复杂,而实用上也无须知道个复杂,而实用上也无须知道个别质点的运动情况,在工程流别质点的运动情况,在工程流体力学中很少采用。体力学中很少采用。 欧拉法欧拉法(euler method)是以流体质点流经流场中
6、)是以流体质点流经流场中各空间点的运动来研究流动的方法。各空间点的运动来研究流动的方法。 流场法流场法 研究对象:研究对象:流场流场u 它不直接追究质点的运动过程,而是以充满运动它不直接追究质点的运动过程,而是以充满运动流体质点的空间流体质点的空间流场为对象。研究各时刻质点在流场为对象。研究各时刻质点在流场中的变化规律。固守于流场各空间点流场中的变化规律。固守于流场各空间点, 通过观察通过观察在流动空间中的每一个空间点上运动要素随时间的变在流动空间中的每一个空间点上运动要素随时间的变化,把足够多的空间点综合起来而得出的整个流体的化,把足够多的空间点综合起来而得出的整个流体的运动情况。运动情况。
7、tzyxTTtzyxpptzyxtzyxvv,tzyxuu,写成分量形式写成分量形式tzyxuutzyxuutzyxuuzzyyxx,(x,y,z,t)欧拉变量欧拉变量 流体质点,某一时刻,处于流场不同位置,速度是坐标及时流体质点,某一时刻,处于流场不同位置,速度是坐标及时间的函数,所以流速是间的函数,所以流速是t 的复合函数,对流速求导可得加速度的复合函数,对流速求导可得加速度:dttzyxuda,如:如:dtdzzudtdyyudtdxxutudtduaxxxxxx代入上式得代入上式得: zyxudtdzudtdyudtdx , , zuuyuuxuutudtudazyxzuuyuuxuu
8、tudtduazuuyuuxuutudtduazuuyuuxuutudtduazzzyzxzzzyzyyyxyyyxzxyxxxxx等号右边第一项是时变加速度;后三项是位变加速度;等号右边第一项是时变加速度;后三项是位变加速度; 引人微分算子引人微分算子:kzjyix)zVyVxVV(-矢量微分算子VVtVtVadd那么zVyVxVttzyxdd引入随体导数算子:引入随体导数算子:若流动参数为B (可以是速度,压强,密度等),则表示流场中一位置固定点,B参数对时间的变化引起,-局部改变率tB.)1zBVyBVxBV.)2zyx表示流场中B参数在空间分布不均匀引起的-迁移改变率u 时变加速度时变
9、加速度(当地加速度)(当地加速度) 流动过程中流体由于速度随时间变化而引起的加速度;流动过程中流体由于速度随时间变化而引起的加速度; u 位变加速度位变加速度(迁移加速度)(迁移加速度)流动过程中流体由于速度随位置变化而引起的加速度。流动过程中流体由于速度随位置变化而引起的加速度。在在恒定恒定流中流中,流场中任意空间点的运动要素不随时间变化流场中任意空间点的运动要素不随时间变化,所所以时变加速度等于零;以时变加速度等于零; 在在均匀均匀流中流中,质点运动速度不随空间变化质点运动速度不随空间变化 ,所以位变加速度,所以位变加速度等于零。等于零。zuuyuuxuutudtudazyx 欧拉法欧拉法
10、 分别描述有限质点的轨迹分别描述有限质点的轨迹同时描述所有质点的瞬时参数同时描述所有质点的瞬时参数不能直接反映参数的空间分布不能直接反映参数的空间分布 直接反映参数的空间分布直接反映参数的空间分布不适合描述流体微元的不适合描述流体微元的运动变形特性运动变形特性适合描述流体微元的适合描述流体微元的运动变形特性运动变形特性 拉格朗日观点是重要的拉格朗日观点是重要的流体力学最常用的解析方法流体力学最常用的解析方法拉格朗日法拉格朗日法 第二节第二节 恒定流与非恒定流恒定流与非恒定流 1.恒定流定义恒定流定义 v恒定流恒定流又称定常流,是指流场中的流体流动,空又称定常流,是指流场中的流体流动,空间点上各
11、水力运动要素均不随时间而变化间点上各水力运动要素均不随时间而变化即:即: 0, 0, 0三者都等于tututuzyxpptpzyxuutuzyx2.非恒定流的定义非恒定流的定义 l非恒定流非恒定流又称非定常流又称非定常流,是指流场中的流体流动空是指流场中的流体流动空 间点上各水力运动要素中间点上各水力运动要素中, 只要有任何一个随时间的变只要有任何一个随时间的变 化而变化的流动。化而变化的流动。三者中至少一个即:tzutyutxuzyxpptpzyxuu, 0, 0不等于 问题1:恒定流是: A、流动随时间按一定规律变化; B、流场中任意空间点的运动要素不随时间变化; C、各过流断面的速度分布