1. 首页
  2. 文档大全

模拟电子线路31 MOS场效应管

上传者:1****6 2022-06-23 22:37:03上传 PPT文件 1.16MB
模拟电子线路31 MOS场效应管_第1页 模拟电子线路31 MOS场效应管_第2页 模拟电子线路31 MOS场效应管_第3页

《模拟电子线路31 MOS场效应管》由会员分享,可在线阅读,更多相关《模拟电子线路31 MOS场效应管(38页珍藏版)》请在文档大全上搜索。

1、P沟道(沟道(PMOS) N沟道(沟道(NMOS) P沟道(沟道(PMOS) N沟道(沟道(NMOS) 增强型(增强型(EMOS) 耗尽型(耗尽型(DMOS) Metal-Oxide Semiconductor Field Effect Transistor 由金属、氧化物和半导体制成。称为由金属、氧化物和半导体制成。称为金属金属-氧化物氧化物-半半导体场效应管导体场效应管,或简称,或简称 MOS 场效应管场效应管。特点:输入电阻可达特点:输入电阻可达 109 以上。以上。VGS = 0 时漏源间存在导电沟道称时漏源间存在导电沟道称耗尽型场效应管;耗尽型场效应管;VGS = 0 时漏源间不存在

2、导电沟道称时漏源间不存在导电沟道称增强型场效应管。增强型场效应管。 N沟道沟道MOS管与管与P沟道沟道MOS管工作原理相似,不管工作原理相似,不同之处仅在于它们形成电流的载流子性质不同,因同之处仅在于它们形成电流的载流子性质不同,因此导致加在各极上的电压极性相反此导致加在各极上的电压极性相反。 q N沟道沟道EMOSFET结构示意图结构示意图N+N+P+P+PUSGD源极源极漏极漏极衬底极衬底极 SiO2绝缘层绝缘层金属栅极金属栅极P型硅型硅 衬底衬底SGUD电路符号电路符号l沟道长度沟道长度W沟道沟道宽度宽度源极源极 S ( Source ) 漏极漏极 D(Drain) 衬底引线衬底引线 U

3、栅极栅极 G ( Gate )N 沟道增强型沟道增强型MOS 场效应管场效应管的结构示意图的结构示意图 N沟道沟道EMOS管管外部工作条件外部工作条件 VDS 0 ( (保证栅漏保证栅漏PN结反偏结反偏) )。 U接电路最低电位或与接电路最低电位或与S极相连极相连( (保证源衬保证源衬PN结反偏结反偏) )。 VGS 0 ( (形成导电沟道形成导电沟道) )PP+N+N+SGDUVDS- + - + - +- + VGSq N沟道沟道EMOS管管工作原理工作原理栅栅 衬之间衬之间相当相当于以于以SiO2为介质为介质的平板电容器。的平板电容器。 绝缘栅场效应管利用绝缘栅场效应管利用 VGS 来控

4、制来控制“感应电荷感应电荷”的多少,的多少,改变由这些改变由这些“感应电荷感应电荷”形成的导电沟道的状况,以控制形成的导电沟道的状况,以控制漏极电流漏极电流 ID。工作原理分析:工作原理分析:( (1) )VGS = 0 漏源之间相当于两个背靠漏源之间相当于两个背靠背的背的 PN 结,无论漏源之间加何结,无论漏源之间加何种极性电压,种极性电压,总是不导电总是不导电。SUD N沟道沟道EMOSFET沟道形成原理沟道形成原理 假设假设VDS =0,讨论,讨论VGS作用作用VGG( (2) ) VDS = 0,0 VGS pVGS越大,反型层中越大,反型层中n 越多,导电能力越强。越多,导电能力越强

5、。反型层反型层 VDS对沟道的控制对沟道的控制(假设(假设VGS VGS(th) 且保持不变)且保持不变) VDS很小时很小时 VGD VGS 。此时沟道深度近似不变此时沟道深度近似不变,即即Ron不变不变。由图由图 VGD = VGS - - VDS因此因此 VDS ID线性线性 。 若若VDS 则则VGD 近漏端沟道近漏端沟道 Ron增大增大。此时此时 Ron ID 变慢。变慢。PP+N+N+SGDUVDS- + - + VGS- + - + PP+N+N+SGDUVDS- + - + VGS- + - + 当当VDS增加到增加到使使VGD =VGS(th)时时 A点出现预夹断点出现预夹断

6、 若若VDS 继续继续 A点左移点左移出现夹断区出现夹断区此时此时 VAS =VAG +VGS =- -VGS(th) +VGS (恒定)(恒定)若忽略沟道长度调制效应,则近似认为若忽略沟道长度调制效应,则近似认为l 不变(即不变(即Ron不变)。不变)。因此预夹断后:因此预夹断后:PP+N+N+SGDUVDS- + - + VGS- + - + APP+N+N+SGDUVDS- + - + VGS- + - + AVDS ID 基本维持不变。基本维持不变。 若考虑沟道长度调制效应若考虑沟道长度调制效应则则VDS 沟道长度沟道长度l 沟道电阻沟道电阻Ron略略 。因此因此 VDS ID略略 。

7、由上述分析可描绘出由上述分析可描绘出ID随随VDS 变化变化的关系曲线:的关系曲线:IDVDS0VGS VGS(th)VGS一定一定曲线形状类似三极管输出特性。曲线形状类似三极管输出特性。 MOS管仅依靠一种载流子(多子)导电,故管仅依靠一种载流子(多子)导电,故称称单极型器件。单极型器件。 三极三极管中多子、少子同时参与导电,故称管中多子、少子同时参与导电,故称双双极型器件。极型器件。 利用半导体表面的电场效应,通过栅源电压利用半导体表面的电场效应,通过栅源电压VGS的变化,改变感生电荷的多少,从而改变感的变化,改变感生电荷的多少,从而改变感生沟道的宽窄,控制漏极电流生沟道的宽窄,控制漏极电

8、流ID。MOSFET工作原理:工作原理: 由于由于MOS管栅极电流管栅极电流为零,故不讨论输入特为零,故不讨论输入特性曲线。性曲线。 共源组态特性曲线:共源组态特性曲线:ID= f ( VGS )VDS = 常数常数转移特性:转移特性:ID= f ( VDS )VGS = 常数常数输出特性:输出特性:q 伏安特性伏安特性+TVDSIG 0VGSID+- - - 转移特性与输出特性反映场效应管同一物理过程,转移特性与输出特性反映场效应管同一物理过程,它们之间可以相互转换。它们之间可以相互转换。 NEMOS管输出特性曲线管输出特性曲线q 非饱和区非饱和区特点:特点:ID同时受同时受VGS与与VDS

9、的控制。的控制。当当VGS为常数时,为常数时,VDSID近似线性近似线性 ,表现为一种电阻特性;,表现为一种电阻特性; ID/mAVDS /V0VDS = VGS VGS(th)VGS =5V3.5V4V4.5V当当VDS为常数时,为常数时,VGS ID ,表现出一种压控电阻的特性。,表现出一种压控电阻的特性。 沟道预夹断前对应的工作区。沟道预夹断前对应的工作区。条件:条件:VGS VGS(th) V DS VGS(th) V DS VGSVGS(th) 考虑到沟道长度调制效应,输出特性曲线随考虑到沟道长度调制效应,输出特性曲线随VDS的增加略有上翘。的增加略有上翘。注意:饱和区(又称放大区)

10、对应三极管的放大区。注意:饱和区(又称放大区)对应三极管的放大区。数学模型:数学模型:若考虑沟道长度调制效应,则若考虑沟道长度调制效应,则ID的修正方程:的修正方程: 工作在工作在饱和区时,饱和区时,MOS管的正向受控作用,服管的正向受控作用,服从平方律关系式:从平方律关系式:2GS(th)GSOXnD)(2VVlWCIADS2GS(th)GSOXnD1)(2VVVVlWCIDS2GS(th)GSOXn1)(2VVVlWC其中:其中: 称称沟道长度调制系数,其值与沟道长度调制系数,其值与l 有关。有关。通常通常 =( 0.005 0.03 )V- -1q 截止区截止区特点:特点:相当于相当于M


文档来源:https://www.renrendoc.com/paper/212634820.html

文档标签:

下载地址