可逆调速系统



《可逆调速系统》由会员分享,可在线阅读,更多相关《可逆调速系统(91页珍藏版)》请在文档大全上搜索。
1、 可逆直流调速系统 第第 4 章章4.1 可逆直流调速系统可逆直流调速系统内容提要n问题的提出n晶闸管-电动机系统的可逆线路n晶闸管-电动机系统的回馈制动n两组晶闸管可逆线路中的环流n有环流可逆调速系统n无环流可逆调速系统4.1.0 问题的提出问题的提出 有许多生产机械要求电动机既能正转,又能反转,而且常常还需要快速地起动和制动,这就需要电力拖动系统具有四象限运行的特性,也就是说,需要可逆可逆的调速系统的调速系统。4.1.0 问题的提出(续)问题的提出(续) 改变电枢电压的极性,或者改变励磁磁通的方向,都能够改变直流电机的旋转方向,这本来是很简单的事。 然而当电机采用电力电子装置供电时,由于电
2、力电子器件的单向导电性电力电子器件的单向导电性,问题就变得复杂起来了,需要专用的可逆电力电子装置和自动控制系统。4.1.2 有环流控制的可逆晶闸管有环流控制的可逆晶闸管-电动机系统电动机系统一一. V-M系统的可逆线路系统的可逆线路 根据电机理论,改变电枢电压的极性,或者改变励磁磁通的方向,都能够改变直流电机的旋转方向。因此,V-M系统的可逆线路有两种方式:l电枢反接可逆线路l励磁反接可逆线路1. 电枢反接可逆线路 电枢反接可逆线路的形式有多种,这里介绍如下3种方式:(1)接触器开关切换的可逆线路(2)晶闸管开关切换的可逆线路(3)两组晶闸管装置反并联可逆线路(1) 接触器开关切换的可逆线路
3、KMF闭合,电动机正转; KMR闭合,电动机反转。Ud+IdIdM(2)晶闸管开关切换的可逆线路 VT1、VT4导通,电动机正转; VT2、VT3导通,电动机反转。晶闸管开关切换的可逆线路Ud+IdIdMVT1VT2VT3VT4 接触器切换可逆线路的特点n优点:仅需一组晶闸管装置,简单、经济。n缺点:有触点切换,开关寿命短; 需自由停车后才能反向,时间长。n应用:不经常正反转的生产机械。(3)两组晶闸管装置反并联可逆线路 较大功率的可逆直流调速系统多采用晶闸管-电动机系统。由于晶闸管的单向导电性,需要可逆运行时经常采用两组晶闸管可控整流装置反并联的可逆线路,如下图所示。图4-2 两组晶闸管可控
4、整流装置反并联可逆线路 n 两组晶闸管装置反并联可逆供电方式Idb) 运行范围- n-IdnO正向反向a) 电路结构MVRVFId-Id+-+- 两组晶闸管装置可逆运行模式 n电动机正转时,由正组晶闸管装置VF供电;n反转时,由反组晶闸管装置VR供电。 两组晶闸管分别由两套触发装置控制,都能灵活地控制电动机的起、制动和升、降速。 但是,不允许让两组晶闸管同时处于整流状态,否则将造成电源短路,因此对控制电路提出了严格的要求。 2. 励磁反接可逆线路 改变励磁电流的方向也能使电动机改变转向。与电枢反接可逆线路一样,可以采用接触器开关或晶闸管开关切换方式,也可采用两组晶闸管反并联供电方式来改变励磁方
5、向。 励磁反接可逆线路见下图,电动机电枢用一组晶闸管装置供电,励磁绕组由另外的两组晶闸管装置供电。励磁反接可逆供电方式晶闸管反并联励磁反接可逆线路MVId+-VR VFId-Id+-+- 励磁反接的特点n优点:供电装置功率小 由于励磁功率仅占电动机额定功率的1 % 5%,因此,采用励磁反接方案,所需晶闸管装置的容量小、投资少、效益高。n缺点:改变转向时间长 由于励磁绕组的电感大,励磁反向的过程较慢;又因电动机不允许在失磁的情况下运行,因此系统控制相对复杂一些。小小 结结(1)V-M系统的可逆线路可分为两大类系统的可逆线路可分为两大类n电枢反接可逆线路电枢反接反向过程快,但需要较大容量的晶闸管装
6、置;n励磁反接可逆线路励磁反接反向过程慢,控制相对复杂,但所需晶闸管装置容量小。(2)每一类线路又可用不同的换向方式每一类线路又可用不同的换向方式n接触器切换线路适用于不经常正反转的生产机械;n晶闸管开关切换线路适用于中、小功率的可逆系统;n两组晶闸管反并联线路适用于各种可逆系统。三. 可逆V-M系统中的环流问题 1. 环流及其种类环流及其种类n环流的定义 采用两组晶闸管反并联的可逆V-M系统,如果两组装置的整流电压同时出现,便会产生不流过负载而直接在两组晶闸管之间流通的短路电流,称作环流,如下图中所示。图4-5 反并联可逆V-M系统中的环流 MVR VFUd0f+-+Ud0rRrecRrec
7、Ra- 环流的形成IdIcIc 环流Id 负载电流 环流的危害和利用n危害:一般地说,这样的环流对负载无益,徒然加重晶闸管和变压器的负担,消耗功率,环流太大时会导致晶闸管损坏,因此应该予以抑制或消除。n利用:只要合理的对环流进行控制,保证晶闸管的安全工作,可以利用环流作为流过晶闸管的基本负载电流,使电动机在空载或轻载时可工作在晶闸管装置的电流连续区,以避免电流断续引起的非线性对系统性能的影响。 环流的分类 在不同情况下,会出现下列不同性质的环流: (1)静态环流)静态环流 两组可逆线路在一定控制角下稳定工作时出现的环流,其中又有两类:n直流平均环流由晶闸管装置输出的直流平均电压所产生的环流称作
8、直流平均环流。n瞬时脉动环流两组晶闸管输出的直流平均电压差为零,但因电压波形不同,瞬时电压差仍会产生脉动的环流,称作瞬时脉动环流。 环流的分类(续)(2)动态环流)动态环流 仅在可逆V-M系统处于过渡过程中出现的环流。 这里,主要分析静态环流的形成原因,并讨论其控制方法和抑制措施。2. 直流平均环流与配合控制 在两组晶闸管反并联的可逆V-M系统中,如果让正组VF 和反组VR都处于整流状态,两组的直流平均电压正负相连,必然产生较大的直流平均环流。为了防止直流平均环流的产生,需要采取必要的措施,比如:n采用封锁触发脉冲的方法,在任何时候,只允许一组晶闸管装置工作;n采用配合控制的策略,使一组晶闸管
9、装置工作在整流状态,另一组则工作在逆变状态。(1)配合控制原理 为了防止产生直流平均环流,应该当正组处于整流状态时,强迫让反组处于逆变状态,且控制其幅值与之相等,用逆变电压把整流电压 顶住,则直流平均环流为零。于是 Ud0r = Ud0f 由式(4-1), Ud0f = Ud0 max cosf Ud0f = Ud0 max cosr其中 f 和r 分别为VF和VR的控制角。 由于两组晶闸管装置相同,两组的最大输出电压 Ud0max 是一样的,因此,当直流平均环流为零时,应有 cos r = cos f或 r + f = 180 (4-3)如果反组的控制用逆变角 r 表示,则 f = r (4
10、-4) 由此可见,按照式(4-4)来控制就可以消除直流平均环流,这称作 = 配合控制。为了更可靠地消除直流平均环流,可采用 f r (4-5) (2)配合控制方法 为了实现配合控制,可将两组晶闸管装置的触发脉冲零位都定在90,即n当控制电压 Uc= 0 时,使 f = r = 90,此时 Ud0f = Ud0r = 0 ,电机处于停止状态。n增大控制电压Uc 移相时,只要使两组触发装置的控制电压大小相等符号相反就可以了。这样的触发控制电路示于下图。图4-6 = 配合控制电路GTF正组触发装置 GTR 反组触发装置 AR 反号器 MVRVFRrecRrec-1ARGTRGTFUcRaM(3) =
11、 配合控制电路 在如图电路中,用同一个控制电压去控制两组触发装置,正组触发装置GTF由 Uc 直接控制,而反组触发装置GTR由 控制, 是经过反号器AR后获得的。 ccUU-cU(4) = 配合控制特性 = 配合控制系统的移相控制特性示于下图。移相时,如果一组晶闸管装置处于整流状态,另一组便处于逆变状态,这是指控制角的工作状态而言的。图4-7 =配合控制特性 = 移相控制特性(续) - UcmUc90o rmin180o 0oUcm90o0o 180o fmin fmin rmin r fGTRGTFUc1r f(5) = 控制的工作状态待逆变状态待逆变状态 实际上,这时逆变组除环流外并未流过