
《DS证据理论(课堂PPT)》由会员分享,可在线阅读,更多相关《DS证据理论(课堂PPT)(62页珍藏版)》请在文档大全上搜索。
1、1证据理论的诞生和形成证据理论的诞生和形成 诞生诞生:源于20世纪60年代美国哈佛大学数学家A. P. Dempster在利用上、下限概率来解决多值映射问题利用上、下限概率来解决多值映射问题方面的研究工作。自1967年起连续发表了一系列论文,标志着证据理论的正式诞生。 形成形成:Dempster的学生G. Shafer对证据理论做了进一步的发展,引入信任函数信任函数概念,形成了一套基于“证据”和“组合”来处理不确定性推理问题的数学方法,并于1976年出版了证据的数学理论(A Mathematical Theory of Evidence),这标志着证据理论正式成为一种处理不确定性问题的完整理论
2、。第二章 不确定性推理方法D-S证据理论2不确定性推理方法D-S证据理论 D-S证据理论是对贝叶斯推理方法的推广,贝叶斯推证据理论是对贝叶斯推理方法的推广,贝叶斯推理方法是利用概率论中的贝叶斯条件概率公式来进行处理的理方法是利用概率论中的贝叶斯条件概率公式来进行处理的方法,但是它需要知道先验概率。方法,但是它需要知道先验概率。D-S证据理论不需要知道证据理论不需要知道先验概率,能够很好地表示先验概率,能够很好地表示“不确定不确定”和和“不知道不知道”,并且,并且具有推理形式简单等优点,所以被广泛用来处理不确定数据。具有推理形式简单等优点,所以被广泛用来处理不确定数据。 由于在证据理论中需要的先
3、验数据比概率推理理论中的更为直观、更容易获得,再加上Dempster合成公式可以综合不同专家或数据源的知识或数据,这使得证据理论在专家系专家系统、信息融合统、信息融合等领域中得到了广泛应用。 适用领域适用领域:信息融合、专家系统、情报分析、法律案件分析、多属性决策分析,等等。 3证据理论的名称证据理论的名称 证据理论(Evidential Theory) Dempster-Shafer理论 Dempster-Shafer证据理论 DS (或D-S)理论其它叫法: Dempster规则 Dempster合成规则 Dempster证据合成规则4与贝叶斯推理的比较,证据理论具有与贝叶斯推理的比较,证
4、据理论具有以下优点:以下优点: 5设设U是表示是表示X所有取值的一个论域集合,且所有在所有取值的一个论域集合,且所有在U内的元素内的元素间 是 互 不 相 容 的 , 则 称间 是 互 不 相 容 的 , 则 称 U 为为 X 的 识 别 框 架 。的 识 别 框 架 。论域:科学理论中的研究对象,这些对象构成一个不空的集论域:科学理论中的研究对象,这些对象构成一个不空的集合,称为论域。合,称为论域。 证据理论的基本概念 6789Demspter组合规则 10判决规则 11证据理论存在的问题 v一,无法解决证据冲突严重和完全冲突的情况v二,难以辨识所合成证据的模糊程度,由于证据理论中的证据模糊
5、主要来自于各子集的模糊度。根据信息论的观点,子集中的元素个数越多,子集的模糊度越大。v三,基本概率分配函数的微小变化会使组合结果产生急剧变化。 12Dempster合成规则计算举例合成规则计算举例 例1. “Zadeh悖论悖论” :某宗“谋杀案” 的三个犯罪嫌疑人组成了识别框架 =Peter, Paul, Mary ,目击证人(W1, W2)分别给出下表所示。【要求】:计算证人W1和W2提供证据的组合结果。【解】:首先,计算归一化常数K。12121212( )( )()()()()()()0.99 00.01 0.01 0 0.990.0001B CKm Bm Cm Peterm Peterm
6、 Paulm Paulm Marym Mary 13其次,利用Dempster证据合成规则分别计算Peter, Paul, Mary的组合BPA(即组合mass函数)。(1)关于Peter的组合mass函数1212121()( )()1()()10.990.000.000.0001BCPetermmPeterm BmCKmPetermPeterK(2)关于Paul的组合mass函数12121()()()10.01 0.0110.0001mmPaulmPaulmPaulK14(3)关于Mary的组合mass函数1212121()( )()1()()10.000.990.000.0001BCMar
7、ymmMarym BmCKmMarymMaryK【说明】:对于这个简单的实例而言,对于Peter, Paul, Mary的组合mass函数,再求信任函数、似然函数,可知:信任函数值似然函数值组合后的mass函数值即, Bel(Peter) = Pl(Peter) = m12(Peter) = 0 Bel(Paul) = Pl(Paul) = m12(Paul) = 1 Bel(Mary) = Pl(Mary) = m12(Mary) = 015 例2. 若修改“Zadeh悖论悖论” 表中的部分数据,如下表所示。请重新计算证人W1和W2提供证据的组合结果。【解】【解】:首先,计算归一化常数K。1
8、21212121( )( )1 ()()()()()()1(0.980.010.980.980.01 0.98)0.02BCKm Bm Cm PetermPaulm PetermMarym PaulmMary 16归一化常数K的另一种计算法:12121212121212( )( )()( )()()()( )( )()( )()( )( )0.98 0.010.01 0.010.01 0.010.01 0.010.01 0.980.01 0.010.02B CKm Bm Cm Petermm PaulmPaulm PaulmmmPaulmmMarymm 17121212121()( )()1(
9、)()()()1(0.9800.980.01)0.490.02BCPetermmPeterm BmCKmPetermPetermPetermK(1)计算关于)计算关于Peter的组合的组合mass函数函数1812121212121()( )()1()()()()()()1(0.01 0.010.01 0.010.01 0.01)0.0150.02BCPaulmmPaulm BmCKmPaulmPaulmPaulmKmmPaul (2)计算关于)计算关于Paul的组合的组合mass函数函数19121212121()( )()1()()( )()1(00.980.01 0.98)0.490.02B
10、CMarymmMarym BmCKmMarymMarymmMaryK(3)计算关于)计算关于Mary的组合的组合mass函数函数201212121()( )()1()()10.01 0.010.0050.02BCmmm BmCKmmK (4)计算关于)计算关于 =Peter, Paul, Mary的组合的组合mass函数函数此外,根据信任函数、似然函数的计算公式,可得:即, Bel(Peter) = 0.49; Pl(Peter) = 0.49 + 0.005 = 0.495 Bel(Paul) = 0.015; Pl(Paul) = 0.015 + 0.005=0.020 Bel(Mary)
11、 = 0.49; Pl(Mary) = 0.49 + 0.005 = 0.495 Bel() = Pl() = 0.49 + 0.015 + 0.49 + 0.005 = 121v证据1:假设样本空间,表示战斗机,表示轰炸机,表示其他飞行器,两个证据如下:2223v难以辨识所合成证据的模糊程度,由于证据理论中的证据模糊主要来自于各子集的模糊度。根据信息论的观点,子集中元素个数越多,子集的模糊度越大。2425v基本概率分配函数的微小变化会使组合结果产生急剧变化。 2627对证据理论的改进 vYager的合成公式的合成公式 28293031改进的Yager公式 32333435比较36一些加权算法
12、 37加权证据组合法 38加权分配冲突法 39吸收法吸收法 40 当发生冲突的两个证据不在限度范围内,该算法将发生冲突的基本置信分配值分给产生冲突焦元中基本置信概率函数值较大的焦元(与证据可靠性无关);当发生冲突的两个证据在限度范围内,可以认为两个证据对冲突起同样作用,所以把发生冲突的概率分配函数平均分给两者,从而保证组合后证据的基本概率分配函数没有大的突变。该算法随着的增大,组合结果的突变会随之减小。4142基于置信度加权吸收法基于置信度加权吸收法 43 该合成算法得到的合成结果符合直观结论;由于可以自适应获得分配权值,该算法可以看作是对加权分配冲突法的改进;可以满足实时性要求和多变的环境。44WPCR规则规则 454647484950515253545556575859606162v D-S证据是进行决策融合的一种行之有证据是进行决策融合的一种行之有效的算法,该算法在没有证据冲突的情况下效的算法,该算法在没有证据冲突的情况下计算量小,工程容易实现。如果证据之间发计算量小,工程容易实现。如果证据之间发生冲突,该算法不能应用并且会产生错误的生冲突,该算法不能应用并且会产生错误的结论,因此需要新的算法解决冲突情况下的结论,因此需要新的算法解决冲突情况下的证据理论。证据理论。
文档来源:https://www.renrendoc.com/paper/212476247.html
文档标签:文本