钢的渗氮技术及检验

《钢的渗氮技术及检验》由会员分享,可在线阅读,更多相关《钢的渗氮技术及检验(64页珍藏版)》请在文档大全上搜索。
1、钢的渗氮技术及检验2013年7月目录 渗氮基本原理 氮化方法 渗氮钢及预先热处理 渗氮工艺及实践 渗氮设备 渗氮件的品质检验 渗氮硬化层深度的测定和金相组织检验 氮化常见问题分析渗氮基本原理渗氮定义:是在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。钢的渗氮通常在480580进行,抗蚀渗氮或含钛2%以上的钢种的渗氮温度一般也不超过650.渗氮层表面硬度高而且表面处于压应力状态,能显著提高钢的耐磨性与疲劳强度,改善耐蚀性和抗擦伤性能。500以下长时间加热,渗氮层硬度可基本保持不变。渗氮的目的:是为了提高钢铁制件的表面硬度,耐磨性,疲劳性能及抗腐蚀性能。渗氮基本原理传统的气体渗氮是把工
2、件放入密封容器中,通以流动的氨气并加热,保温较长时间后,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入工件表层内,从而改变表层的化学成分和组织,获得优良的表面性能。如果在渗氮过程中同时渗入碳以促进氮的扩散,则称为氮碳共渗。常用的是气体渗氮和离子渗氮。氮化原理n 零件经过氮化以后,它的表层组织由于氮的渗入而发生了变化。由铁氮系状态图中可知,其形成五种相,即相、相、相、相和相。 相是氮在-e中的间隙固溶体,相在缓慢冷却过程中将析出相。 相是氮在-Fe中的间隙固溶体,即含氮奥氏体。缓冷时相发生共析反应,生成共析组织(+)。 相是有序面心立点阵的间隙相,存在于680以下。相有较高的硬度(HV
3、550)和韧性。 相是含氮范围很宽的间隙相化合物,室温时含氮量为8.1-11.1%,成分近似于Fe2-3N。随着温度的降低,相中不断析出相。 相是以密排六方点阵为化合物Fe2N为基的间隙固溶体,含氮在11.1-11.35%范围内,性脆、耐腐蚀。n 氮化层的组织习惯上都说成由白亮层、这三层组成。 Fe-N状态图中的相状态图中的相氮化原理n 合金钢中氮化层的形成,氮不仅与铁发生作用,而且与合金元素也发生作用。如果在590以下进行氮化,氮首先溶入-Fe中形成相。当氮达到-Fe的饱和浓度后,便与氮化物形成元素发生作用,按照氮与合金元素亲和力的强弱,依次形成氮化物。例如38CrMoAlA,先形成极为弥散
4、的氮化铝,然后形成氮化钼,最后形成氮化铬。合金元素与氮的亲和力越大,所形成的氮化物越稳定,熔点、硬度也越高。氮化物的稳定性按下列次序降低,即Ti、Al、V、Nb、W、Mo、Cr、Mn、Fe的氮化物。氮化方法 氮化工艺方法 硬氮化:学名渗氮,也有人称为常规氮化。渗入钢表面的是单一的氮元素,在方法上有气体法和离子法等。 对于结构零件通常选用的钢种为含铬、钼、钛、铝等合金元素的专用钢,也有在其它钢种上进行渗氮的,例如不锈钢、模具钢等。 渗氮处理的温度通常在480540范围(既要保持工件的心部的调质硬度又要使渗氮层的硬度达到要求值),处理的时间按照要求深度不同,一般为1570小时,甚至更长。 渗氮的着
5、眼点是希望获得较深厚度(0.10.65mm,也有要求更深一些的)具有高硬度的呈弥散状的合金氮化物层(即扩散层),对于出现外表层的化合物层(白亮层)则希望尽可能的浅簿,甚至希望没有。 软氮化:软氮化实质上是以渗氮为主的低温碳氮共渗,钢的氮原子渗及的同时,还有少量的碳原子渗入,其处理结果与前述一般气体氮相比,渗层硬度较低,脆性较小,故称为软氮化。 软氮化方法分为气体软氮化和液体软氮化两大类。氮化工艺方法 软氮化 常用的共渗介质有尿素、甲酰胺和三乙醇胺,它们在软氮化温度下发生热分解反应,产生活性碳、氮原子。活性碳、氮原子被工件表面吸收,通过扩散渗入工件表层,从而获得以氮为主的碳氮共渗层。气体软氮化温
6、度常用560-570,因该温度下氮化层硬度值最高。氮化时间常为2-3小时,因为超过2.5小时,随时间延长,氮化层深度增加很慢。 软氮化层组织和软氮化特点:钢经软氮化后,表面最外层可获得几微米至几十微米的白亮层,它是由相、相和含氮的渗碳体Fe3(C,N)所组成,次层为0.3-0.4毫米的扩散层,它主要是由相和相组成。 软氮化具有以下特点:(1)处理温度低,时间短,工件变形小。 (2)不受钢种限制,碳钢、低合金钢、工模具钢、不锈钢、铸铁及铁基粉未冶金材料均可进行软氮化处理。工件经软氮化后的表面硬度与氮化工艺及材料有关。(3)能显著地提高工件的疲劳极限、耐磨性和耐腐蚀性。在干摩擦条件下还具有抗擦伤和
7、抗咬合等性能。氮化方法 渗氮方法: 气体渗氮 液体渗氮 固体渗氮 离子渗氮。氮化方法气体氮化气体氮化系于1923年由德国AFry 所发表,将工件置于炉内,利NH3气直接输进500550的氮化炉内,保持20100小时,使NH3气分解为原子状态的(N)气与(H)气而进行渗氮处理,在使钢的表面产生耐磨、耐腐蚀之化合物层为主要目的,其厚度约为0.020.2m/m,其性质极硬Hv 10001200,又极脆,NH3之分解率视流量的大小与温度的高低而有所改变,流量愈大则分解度愈低,流量愈小则分解率愈高,温度愈高分解率愈高,温度愈低分解率亦愈低,NH3气在570时经热分解如下:NH3 NFe + 3/2 H2
8、经分解出来的N,随而扩散进入钢的表面形成。相的Fe2 - 3N气体渗氮,一般缺点为硬化层薄而氮化处理时间长。气体氮化因分解NH3进行渗氮效率低,故一般均固定选用适用于氮化之钢种,如含有Al,Cr,Mo等氮化元素,否则氮化几无法进行,一般使用强韧化处理又称调质,因Al,Cr,Mo等皆为提高变态点温度之元素,故淬火温度高,回火温度亦较普通之构造用合金钢高,此乃在氮化温度长时间加热之间,发生回火脆性,故预先施以调质强韧化处理。NH3气体氮化,因为时间长表面粗糙,硬而较脆不易研磨,而且时间长不经济,用于塑胶射出形机的送料管及螺旋杆的氮化。液体氮化液体软氮化主要不同是在氮化层里之有Fe3N相,Fe4Nr
9、相存在而不含Fe2N相氮化物,相化合物硬脆在氮化处理上是不良于韧性的氮化物,液体软氮化的方法是将被处理工件,先除锈,脱脂,预热后再置于氮化坩埚内,坩埚内是以TF 1为主盐剂,被加温到560600处理数分至数小时,依工件所受外力负荷大小,而决定氮化层深度,在处理中,必须在坩埚底部通入一支空气管以一定量之空气氮化盐剂分解为CN或CNO,渗透扩散至工作表面,使工件表面最外层化合物89%wt的N及少量的C及扩散层,氮原子扩散入 Fe基地中使钢件更具耐疲劳性,氮化期间由于CNO之分解消耗,所以不断要在68小时处理中化验盐剂成份,以便调整空气量或加入新的盐剂。液体软氮化处理用的材料为铁金属,氮化后的表面硬
10、度以含有 Al,Cr,Mo,Ti元素者硬度较高,而其含金量愈多而氮化深度愈浅,如炭素钢Hv 350650,不锈钢Hv 10001200,氮化钢Hv 8001100。液体软氮化适用于耐磨及耐疲劳等汽车零件,缝衣机、照相机等如气缸套处理,气门阀处理、活塞筒处理及不易变形的模具处。采用液体软氮化的国家,西欧各国、美国、苏俄、日本。离子氮化此一方法为将一工件放置于氮化炉内,预先将炉内抽成真空达10-210-3 Torr(Hg)后导入N2气体或N2 + H2之混合气体,调整炉内达110 Torr,将炉体接上阳极,工件接上阴极,两极间通以数百伏之直流电压,此时炉内之N2气体则发生光辉放电成正离子,向工作表
11、面移动,在瞬间阴极电压急剧下降,使正离子以高速冲向阴极表面,将动能转变为气能,使得工件表面温度得以上升,因氮离子的冲击后将工件表面打出Fe.C.O.等元素飞溅出来与氮离子结合成FeN,由此氮化铁逐渐被吸附在工件上而产生氮化作用,离子氮化在基本上是采用氮气,但若添加碳化氢系气体则可作离子软氮化处理,但一般统称离子氮化处理,工件表面氮气浓度可改变炉内充填的混合气体(N2 + H2)的分压比调节得之,纯离子氮化时,在工作表面得单相的r(Fe4N)组织含N量在5.76.1%wt,厚层在10n以内,此化合物层强韧而非多孔质层,不易脱落,由于氮化铁不断的被工件吸附并扩散至内部,由表面至内部的组织即为FeN