1. 首页
  2. 文档大全

二元一次方程组数学活动.doc

上传者:琥珀 2022-07-22 10:59:17上传 DOC文件 54 KB
2
二元一次方程组数学活动
第一篇:二元一次方程组数学活动
数学活动
(共一课时) 第一课时
活动目标:
1、 在平面直角坐标系中从图形的角度理解二元一次方程和二元一次方程组的解。
2、运用二元一次方程组,分析材料中隐含的信息。 活动重点:
从图形角度理解二元一次方程组的解;用二元一次方程组刻画实际问题中的等量关系,并加以解决。 活动过程:
一、 复****旧知
1、什么是二元一次方程的解?
2、什么是二元一次方程组的解?
3、二元一次方程有多少组解?
指名口答,集体回忆。
二、 教学活动 活动一
师:二元一次方程组的解是一组未知数的取值,而在我们学****过的平面直角坐标系中,一组有序数对表示一个点的坐标。你能把二元一次方程的一组解用一个点表示出来吗? 你能自己标出一些以二元一次方程的解为坐标的点吗?标出来以后,你有什么发现? 请学生按照座位,4-6人一组分成不同小组,每组同学取相同的5个x的值,计算相应的y值,然后列表。讲透明纸附在坐标纸上并以相同的单位长度建立平面直角坐标系,并在各自的坐标系上标出5个以方程x-y=0解为坐标的点。 学生活动,教师参与指导。
2
汇报交流:过这些点中的任意两点作直线,你有什么发现? 学生动手画一画,发现规律。
师:以方程的解为坐标的点的全体叫方程的图像;一般地,如何一个二元一次方程的图像都是一条直线。以一个方程的解为坐标的点都在一个直线上;这条直线上任意一点的坐标都是这个方程的解。 活动二
出示教材活动2::210年的统计资料显示,全世界每天平均有13000人死于与吸烟有关的疾病,我国吸烟者约3.56亿人。占世界吸烟人数的四分之一。比较一年中死于与吸烟相关的疾病的人数占吸烟者总数的百分比,我国比世界其他国家约高0.1%。 师:材料中有哪些数据?这些数据之间有什么数量关系?
学生讨论思考,教师提示:可设我国每年死于与吸烟相关的疾病的人数为x万人,世界每年死于与吸烟相关的疾病的人数为y万人,你能列出x和y满足的方程吗? 小组讨论,教师引导学生列出方程组。 学生尝试解方程组得到x和y 的值。
3
师:通过计算,你发现了什么?结合这段文字,你有什么感受? 学生谈感受。
三、 课堂小结
通过这节课,你有什么收获?
四、 布置作业
请你从报刊、图书、网络等再搜集一些资料,分析其中的数量关系,编制问题,思考能不能用二元一次方程组解决它们。
第二篇:二元一次方程组
二元一次方程组
1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程。
注意:一般说二元一次方程有无数个解。
2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组. 3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解。
注意:一般说二元一次方程组只有唯一解(即公共解)。 4.二元一次方程组的解法: (1)代入消元法; (2)加减消元法;
(3)注意:判断如何解简单是关键.※ 5.一次方程组的应用:
5
(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列易解”;
(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系。
一元一次不等式(组)1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式. 2.不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变. 3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集. 4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b>0或ax+b<0 ,(a≠0).
5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点. 6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;注意:ab>0 Û
6
Û
或 ; Ûab<0
Û
或 ;
a=0或b=0;

二元一次方程组数学活动


文档来源:https://www.taodocs.com/p-695280475.html

文档标签:

下载地址