1. 首页
  2. 文档大全

第六章 TD-LTE基本原理及关键技术(2).

上传者:2****5 2022-06-13 09:36:34上传 PPT文件 3.94MB
第六章 TD-LTE基本原理及关键技术(2)._第1页 第六章 TD-LTE基本原理及关键技术(2)._第2页 第六章 TD-LTE基本原理及关键技术(2)._第3页

《第六章 TD-LTE基本原理及关键技术(2).》由会员分享,可在线阅读,更多相关《第六章 TD-LTE基本原理及关键技术(2).(43页珍藏版)》请在文档大全上搜索。

1、第六第六章章 TD-LTE技术技术基本原理基本原理 TD-LTETD-LTE关键技术关键技术1 TD-LTE TD-LTE帧结构及物理信道帧结构及物理信道2主要内容主要内容 TD-LTETD-LTE物理层过程物理层过程3n帧结构帧结构n物理信道物理信道LTE帧结构帧结构FDD LTE帧结构帧结构TD-LTE帧结构帧结构#0帧帧: 10ms子帧: 1ms时隙0.5ms#1#2#3#4#5#6#7#8#9#19子帧: 1ms时隙0.5ms#0DwPTS特殊子帧: 1ms#2#3#4半帧: 5ms半帧: 5ms帧帧: 10msGPUpPTS关键技术帧结构物理信道物理层过程TD-LTE帧结构帧结构子帧

2、: 1ms时隙0.5ms#0DwPTS特殊子帧: 1ms#2#3#4半帧: 5ms半帧: 5ms帧帧: 10msGPUpPTSTD-LTE帧结构特点: 无论是正常子帧还是特殊子帧,长度均为1ms。FDD子帧长度也是1ms。 一个无线帧分为两个5ms半帧,帧长10ms。和FDD LTE的帧长一样。 特殊子帧 DwPTS + GP + UpPTS = 1msDL-UL ConfigurationSwitch-point periodicitySubframe number012345678905 msDSUUUDSUUU15 msDSUUDDSUUD25 msDSUDDDSUDD310 msDSU

3、UUDDDDD410 msDSUUDDDDDD510 msDSUDDDDDDD65 msDSUUUDSUUD TD-LTE上下行配比表转换周期为5ms表示每5ms有一个特殊时隙。这类配置因为10ms有两个上下行转换点,所以HARQ的反馈较为及时。适用于对时延要求较高的场景转换周期为10ms表示每10ms有一个特殊时隙。这种配置对时延的保证略差一些,但是好处是10ms只有一个特殊时隙,所以系统损失的容量相对较小关键技术帧结构物理信道物理层过程TD-LTE帧结构和帧结构和TD-SCDMA帧结构对比帧结构对比子帧: 1ms#0DwPTS特殊子帧: 1ms#2#3#4GPUpPTS正常时隙: 0.67

4、5msGP#1#2#0#3#4#5#6DwPTSUpPTS特殊时隙总长特殊时隙总长: 0.275msTD-SCDMA 半帧半帧: 5msTD-LTE 半帧半帧: 5msTD-LTE和TD-SCDMA帧结构主要区别:1. 时隙长度不同。TD-LTE的子帧(相当于TD-S的时隙概念)长度和FDD LTE保持一致,有利于产品实现以及借助FDD的产业链2. TD-LTE的特殊时隙有多种配置方式,DwPTS,GP,UpPTS可以改变长度,以适应覆盖、容量、干扰等不同场景的需要。3. 在某些配置下,TD-LTE的DwPTS可以传输数据,能够进一步增大小区容量4. TD-LTE的调度周期为1ms,即每1ms

5、都可以指示终端接收或发送数据,保证更短的时延。而TD-SCDMA的调度周期为5ms关键技术帧结构物理信道物理层过程TD-LTE和TD-SCDMA邻频共存(1)TD-S = 3:3根据仿真结果,此时TD-LTE下行扇区吞吐量为26Mbps左右(采用10:2:2,特殊时隙可以用来传输业务)TD-LTE = 2:2 + 10:2:2TD-SCDMA时隙 = 675usDwPTS = 75us GP = 75us UpPTS = 125usTD-LTE子帧= 1ms = 30720Ts10:2:2 = 21952Ts : 4384Ts : 4384Ts3:9:2 = 6592Ts : 19744Ts

6、: 4384TsTD-SCDMATD-LTE1.025ms= 2.15ms特殊时隙特殊时隙共存要求:上下行没有交叠(图中Tb Ta)。则TD-LTE的DwPTS必须小于0.85ms(26112Ts)。可以采用10:2:2的配置0.675ms1ms关键技术帧结构物理信道物理层过程TD-SCDMATD-LTETD-SCDMA时隙 = 675usDwPTS = 75us GP = 75us UpPTS = 125usTD-LTE子帧= 1ms = 30720Ts10:2:2 = 21952Ts : 4384Ts : 4384Ts3:9:2 = 6592Ts : 19744Ts : 4384Ts0.7

7、ms0.675ms1ms= 1.475ms共存要求:上下行没有交叠(图中Tb Ta) 。 则TD-LTE的DwPTS必须小于0.525ms(16128Ts),只能采用3:9:2的配置TD-S = 4:2 根据计算,此时TD-LTE下行扇区吞吐量为28Mbps左右(为避免干扰,特殊时隙只能采用3:9:2,无法用来传输业务。经计算,为和TD-SCDMA时隙对齐引起的容量损失约为20% )计算方法:TS36.213规定,特殊时隙DwPTS如果用于传输数据,那么吞吐量按照正常下行时隙的0.75倍传输。如果采用10:2:2配置,则下行容量为3个正常时隙吞吐量+0.75倍正常时隙吞吐量。如果丢失此0.75

8、倍传输机会,则损失的吞吐量为0.75/3.75 = 20%TD-LTE = 3:1 + 3:9:2关键技术帧结构物理信道物理层过程TD-LTE和和TD-SCDMA邻邻频频共存共存(2)TD-S = 1:5TD-LTE = 1:3 + 3:9:2TD-SCDMATD-LTE 根据计算,此时TD-LTE下行扇区吞吐量为9.3M(特殊时隙无法用来传输业务)如果特殊时隙采用10:2:2,则下行扇区吞吐量为16.2M。所以为和TD-SCDMA时隙对齐引起的容量损失约为43%TD-SCDMA时隙 = 675usDwPTS = 75us GP = 75us UpPTS = 125usTD-LTE子帧= 1m

9、s = 30720Ts10:2:2 = 21952Ts : 4384Ts : 4384Ts3:9:2 = 6592Ts : 19744Ts : 4384Ts0.675ms1ms0.675ms= 3.5ms共存要求:上下行没有交叠(图中Tb Ta) 。TD-LTE的DwPTS必须小于0.5ms(15360Ts)。只能采用 3:9:2关键技术帧结构物理信道物理层过程TD-LTE和和TD-SCDMA邻邻频频共存共存(3)和TD-SCDMA共存 - 小结根据仿真结果,此时TD-LTE下行扇区吞吐量为26Mbps左右(特殊时隙可以用来传输业务)TD-S = 3:3TD-LTE = 2:2 + 10:2:

10、2根据仿真结果,此时TD-LTE下行扇区吞吐量为28Mbps左右(特殊时隙采用3:9:2,无法用来传输业务,损失20%)TD-S = 4:2TD-LTE = 3:1 + 3:9:2TD-LTE = 1:3 + 3:9:2TD-S = 1:5根据计算结果,此时TD-LTE下行扇区吞吐量为9.3M(特殊时隙采用3:9:2,无法用来传输业务,损失43% )上述分析表明:上述分析表明:1. TD-S网络网络3:3配置的情况下,既符合配置的情况下,既符合TD-LTE网络本身支持业务需求和达网络本身支持业务需求和达到自身性能最优的条件,也没有时隙对齐造成的吞吐量损失。到自身性能最优的条件,也没有时隙对齐造

11、成的吞吐量损失。2. 由于现网由于现网TD-S为为4:2的配置,若不改变现网配置,的配置,若不改变现网配置,TD-LTE在需要和在需要和TD-S邻频共存的场景下,时隙配比只能为邻频共存的场景下,时隙配比只能为3:1+3:9:2。关键技术帧结构物理信道物理层过程特殊子帧特殊子帧 TD-LTE特殊子帧继承了TD-SCDMA的特殊子帧设计思路,由DwPTS,GP和UpPTS组成。 TD-LTE的特殊子帧可以有多种配置,用以改变DwPTS,GP和UpPTS的长度。但无论如何改变,DwPTS + GP + UpPTS永远等于1ms特殊子帧配置Normal CPDwPTSGPUpPTS0310119412


文档来源:https://www.renrendoc.com/paper/212622784.html

文档标签:

下载地址