分式的混合运算1



《分式的混合运算1》由会员分享,可在线阅读,更多相关《分式的混合运算1(33页珍藏版)》请在文档大全上搜索。
1、正阳三中 雷亚丽一、提出问题:一、提出问题:请问下面的运算过程对吗?请问下面的运算过程对吗?32)3(4422 xxxxx32)3()2(22 xxxx22 x二、研究解决:二、研究解决: 这是一道关于分式乘除的题目,运算时应注意:这是一道关于分式乘除的题目,运算时应注意: 显然此题在运算顺序上出现了错误,除没有转化显然此题在运算顺序上出现了错误,除没有转化为乘之前是不能运用结合律的,这一点大家要牢记呦!为乘之前是不能运用结合律的,这一点大家要牢记呦!按照运算法则运算;按照运算法则运算;乘除运算属于同级运算,应按照先出现乘除运算属于同级运算,应按照先出现的先算的原则,不能交换运算顺序;的先算的
2、原则,不能交换运算顺序;当除写成乘的形式时,灵活的应用乘当除写成乘的形式时,灵活的应用乘法交换律和结合律可起到简化运算的作用;法交换律和结合律可起到简化运算的作用;结果必须写成整式或最简分式的形式。结果必须写成整式或最简分式的形式。正确的解法:正确的解法:32)3(4422 xxxxx2)3)(2(2 xx除法转化为乘法之后除法转化为乘法之后可以运用乘法的交换可以运用乘法的交换律和结合律律和结合律3231)2(22 xxxxx三、知识要点与例题解析:三、知识要点与例题解析: 分式的乘方分式的乘方:把分子、分母各自乘方。:把分子、分母各自乘方。即即 其中其中b0,b0,a,b,b可可以代表数,也
3、可以代表代数式。以代表数,也可以代表代数式。),()(为正整数为正整数nbabannn mnnmaa )( nnnbaab )( nmnmaaa 整数指数幂的运算性质:整数指数幂的运算性质:若若m,nm,n为整数,且为整数,且a a0,b0,b0 0,则有,则有 nmnmaaa 23223)()2(abbaaba (2 2) 221232)()2()()2( yxyxyxyx(3 3)例例1.(1) 1.(1) 4232)()(abcabccba )(4232)()(abcabccba )(解:解:(1)(1)原式原式4422332)()()()(abcabccba 444222336acbb
4、accba 35cb 分子、分分子、分母分别乘母分别乘方方例例1.(1) 1.(1) 4232)()(abcabccba )(4232)()(abcabccba )(2226233)(8)(babaaba 226233)()(8)(bababaaba 26)(8)(baabab 23223)()2(abbaaba (2 2) 221232)()2()()2(yxyxyxyx 4264)()2()()2(yxyxyxyx 把负整数指数写成把负整数指数写成正整数指数的形式正整数指数的形式积的乘方积的乘方 221232)()2()()2( yxyxyxyx(3 3)46)2(4)()2( yxyx2