1. 首页
  2. 文档大全

第5章金属及合金的强化方法

上传者:2****5 2022-06-29 16:56:08上传 PPT文件 1.13MB
第5章金属及合金的强化方法_第1页 第5章金属及合金的强化方法_第2页 第5章金属及合金的强化方法_第3页

《第5章金属及合金的强化方法》由会员分享,可在线阅读,更多相关《第5章金属及合金的强化方法(50页珍藏版)》请在文档大全上搜索。

1、1金属力学性能 第5章 金属及合金的强化方法金属及合金的强化方法 2本章内容5.1 强化的概念和途径5.2 晶粒细化强化5.3 固溶强化5.4 第二相强化5.5 加工硬化35.1强化的概念和途径 金属失效方式过量弹性变形;过量塑性变形;断裂 金属塑性变形方式位错滑移 提高位错运动阻力强化金属 金属的强化仅仅是指提高金属的屈服强度。 为什么不去提高金属的断裂强度?4 材料的构成1)基体相2)界面:包括相界面和晶界3)第二相 举例:1)Al4.5Cu合金,基体Al,第二相CuAl2,2)SiC/Al复合材料,基体Al,SiC为外加的第二相5 金属强化途径:内因: 界面(晶界)细晶强化溶质原子固溶强

2、化第二相第二相强化提高位错密度加工硬化外因:温度提高,位错运动容易,s 应变速率提高,s 应力状态: 切应力分量,s 特殊应力状态:平面应力和平面应变状态65.2 晶粒细化强化 晶粒:正常晶粒和亚晶粒 亚晶粒的形成原因? 晶界:大角晶界(位向差大于10度)和小角晶界(位向差小于10度) 晶界两侧晶体存在位向差:造成晶界强化的主要原因。晶界是位错运动的障碍。要使相邻晶粒中的位错源开动,必须加大外应力。(但高温下晶界为材料中的弱化区域,不起强化作用) 晶界是位错运动的障碍 原因?7 滑移的临界分切应力 =(P/A)coscos 外应力与滑移面法线夹角; 外应力与滑移方向的夹角; = coscos称

3、为取向因子。 因为各晶粒的取向不同,coscos不同8 室温下位错在晶体内的运动过程:位错运动到晶界后消失于晶界,或受到晶界阻碍形成位错塞积晶体再继续变形需要相邻晶粒内位错开动相邻晶粒内位错开动需要更大的应力需要外加应力提高,即屈服强度提高9什么是屈服强度1)在应力1作用下,晶粒A内位错运动到晶界后受阻2)晶粒B内的位错需要开动,需要更大的外加应力3)外加应力增加,达到应力2,使得B晶粒内位错开动4)B晶粒内位错运动到晶界后,在应力2的作用下,相邻的C晶粒内位错也能开动AB104)位错运动能够从晶粒A、B、C。传递下去5)由于晶界的作用,应力从1增大到2,表现为晶界对材料的强化作用6)这种能够

4、使位错在不同晶粒间传递下去的应力(应力2)就是材料的屈服强度屈服强度是位错能够在 晶粒间传递下去所需要的应力! 举例:复合材料的屈服强度11 按照上面的思路建立晶界与位错运动的模型,如下图AB12 位错塞积群形成的方式(F-R位错源)bS1213受到的阻力为位错在晶体内运动所为外加切应力数为位错塞积群中位错个其中处受到的应力为:位错塞积群顶端in)(ignQAB14晶粒中心的情况?思考:位错塞积群不在为布氏矢量为剪切弹性模量那么,如果塞积群在晶内中心为位错塞积群长度,其中按照位错塞积群理论,b2/LL)(2n2GDGbLiAB15giig2ig)(n)n(QBQA)(处受到的应力为:中位错在晶

5、粒处引起的应力集中在晶界中位错塞积群这是晶粒所以GbD16sc2icgcB)(cosQRB的屈服强度该外加应力就是材料传递到晶粒错滑移从晶粒此时外加应力使得位位错滑移临界应力晶粒塞积群应力集中达到引起位错塞积作用下上式涵义是:外加应力那么,力为方向上位错滑移临界应它在,中位错滑移方向为假设晶粒ABGbDQRs172/1siscs2/1cisc2iscKcosGKcosGcos)(QRBDbDbGbDQR,那么设所以此时:,力为方向上位错滑移临界应它在,中位错滑移方向为假设晶粒AB18增大增大;温度降低,高,研究表明,应变速率提示力,可以用派纳力表力,主要包括晶格摩擦表征材料内位错运动阻)讨论:

6、成正比径的材料屈服强度与晶粒直公式,反映这就是得到:如果采用正应力表示,iii2/1sis12/1PetchHallKD2)还包括位错交互作用产生的阻力P-N力: fcc 位错宽度大,位错易运动。bcc 反之。交互产生的阻力: 平行位错间交互作用产生的阻力;运动位错与林位错交互作用产生的阻力。19。原子钉扎会造成较大的、度有关,还与材料内位错钉扎强越小。多,研究发现材料滑移系越定数值也是材料的参数,是固统计平均值确定。因此平均值,材料确定,该的统计多晶体,可以得到一个是一个变化的量。对于取向差别很大,因此差。由于材料内的晶粒是两个相邻晶粒的取向相对固定,)SSSSSccSKNCKK.KKcos

7、GbK22021 HallPetch公式发现过程发现于上世纪50年代,发现人Hall和Petch都是英国剑桥大学研究生,Hall在论文中对钢的屈服强度与晶粒尺寸关系进行了试验研究;Petch采用位错塞积群理论进行了理论分析。 材料科学中为数不多的定量描述公式之一 纳米材料中的HallPetch关系22 HallPetch公式本质1)晶界两侧晶体存在取向差位错滑移从晶粒A传递到晶粒B需要额外的应力该应力由晶粒A中形成的位错塞积群提供2)位错塞积群提供的附加应力与塞积群中位错个数有关塞积群中能够容纳的位错个数又决定于晶粒尺寸D3)晶粒尺寸越小,塞积群中位错个数越少需要更大的外加应力造成屈服强度提高

8、)(ignGbD2ig)(235.3 固溶强化固溶:外来原子溶入金属种类:间隙固溶;置换固溶24 间隙式固溶:固溶原子都大于间隙尺寸,即使最小的C、N作为固溶原子也是如此间隙固溶都导致固溶原子周围出现压应力区域 置换式固溶:固溶原子大于溶剂金属原子造成压应力区;固溶原子小于溶剂金属原子造成拉应力区;25 金属中固溶后产生以下几种作用:1)固溶原子与位错应力区之间的交互作用(间隙原子都处于位错拉应力区;大固溶原子处于位错拉应力区;小固溶原子处于压应力区)位错运动阻力增大,导致强化2)电子相互作用:溶质原子与附近溶剂原子之间的电子相互作用,导致位错穿越该区域需要更大的能量导致强化263)化学相互作


文档来源:https://www.renrendoc.com/paper/212652131.html

文档标签:

下载地址