1. 首页
  2. 文档大全

2.1.2椭圆的几何性质课件 2020-2021学年高中数学人教B版选修1-1

上传者:zheng****ingzh 2022-06-04 20:25:32上传 PPT文件 1.22MB
2.1.2椭圆的几何性质课件 2020-2021学年高中数学人教B版选修1-1_第1页 2.1.2椭圆的几何性质课件 2020-2021学年高中数学人教B版选修1-1_第2页 2.1.2椭圆的几何性质课件 2020-2021学年高中数学人教B版选修1-1_第3页

《2.1.2椭圆的几何性质课件 2020-2021学年高中数学人教B版选修1-1》由会员分享,可在线阅读,更多相关《2.1.2椭圆的几何性质课件 2020-2021学年高中数学人教B版选修1-1(16页珍藏版)》请在文档大全上搜索。

1、一、复习引入一、复习引入:1.椭圆的定义椭圆的定义: :平面内与两个定点平面内与两个定点F1 1、F2 2的距离之和等于常数(大于的距离之和等于常数(大于| |F1 1F2 2 | |)的点的轨迹叫做椭圆。的点的轨迹叫做椭圆。2.2.椭圆的标准方程是:椭圆的标准方程是:3.3.椭圆中椭圆中a,b,c的关系是的关系是: :a2=b2+c2当焦点在当焦点在x轴上时轴上时当焦点在当焦点在y轴上时轴上时)0( 12222babyax)0( 12222babxay2.1.2 2.1.2 椭圆的几何性质椭圆的几何性质学习目标:学习目标:掌握椭圆的几何性质;理解数形结合的思想.OF2F1xy椭圆关于椭圆关于

2、x轴对称轴对称。二、椭圆的几何性质二、椭圆的几何性质 1.1.对称性对称性观察椭圆观察椭圆 的形状,你能从图上看的形状,你能从图上看出它具有怎么的对称性出它具有怎么的对称性? ? )0( 12222babyaxF2F1Oxy椭圆关于椭圆关于y轴对称。轴对称。观察椭圆观察椭圆 的形状,你能从图像上的形状,你能从图像上看出它具有怎么的对称性?看出它具有怎么的对称性? )0( 12222babyaxA2A1A2F2F1Oxy椭圆关于原点对称椭圆关于原点对称。观察椭圆观察椭圆 的形状,你能的形状,你能从图像上看出它具有怎么的对称性?从图像上看出它具有怎么的对称性? )0( 12222babyax2.2

3、.顶点顶点探究:你能由椭圆的方程,得出椭圆与探究:你能由椭圆的方程,得出椭圆与x轴、轴、 y轴交点的坐标吗?轴交点的坐标吗?)0(12222babyax令令y =0,得,得 x =_顶点:椭圆与它的对称轴顶点:椭圆与它的对称轴的四个交点,叫做椭圆的的四个交点,叫做椭圆的顶点。顶点。长轴:线段长轴:线段A A1 1A A2 2 ,长为长为2 2a短轴:线段短轴:线段B B1 1B B2 2 ,长为长为2 2b oyB2B1A1A2F1F2cab(0,b)(a,0)(0,-b)(-a,0)令令x =0,得,得 y =_x长半轴长长半轴长: :a短半轴长短半轴长: :b 半焦距:半焦距:c a b例

4、例. .根据下列条件,求椭圆的标准方程:根据下列条件,求椭圆的标准方程:(1)长轴长和短轴长分别为8和6,焦点在x轴:. 1492, 301222222xybababxayy所以椭圆标准方程为设椭圆标准方程为轴,焦点在解:由题意得,椭圆(2)经过点P(-2,0),Q(0,-3);练习练习. .根据下列条件,求椭圆的标准方程:根据下列条件,求椭圆的标准方程:(3)一焦点坐标为(-3,0),一顶点坐标为(0,5). 1253434, 3, 501222222222yxcbacbbabyaxx所以椭圆标准方程为设椭圆标准方程为轴,焦点在解:由题意得,椭圆3 3、范围、范围 oyB2B1A1A2F1F

5、2(0,b)(a,0)(0,-b)(-a,0).标的范围观察:椭圆上点的横坐说明:椭圆位于说明:椭圆位于x=a, , y= = b所围成所围成的矩形框的矩形框里里. .xxyO思考:观察不同的椭圆,我们发现椭圆的扁平程思考:观察不同的椭圆,我们发现椭圆的扁平程度不一,保持长半轴度不一,保持长半轴 a 不变,是什么量影响了椭不变,是什么量影响了椭圆的扁平程度?圆的扁平程度?a保持保持a 不变,不变,b越小越小, , c _,椭,椭圆圆_;_;b越大越大, , c _,椭圆,椭圆_._.越小越大越扁越接近于圆椭圆的离心率:焦距与长轴长的比椭圆的离心率:焦距与长轴长的比.acee来表示,即用(1 1

6、)因为 a c0,所以 e 的取值范围是:_0e1 (2 2)离心率对椭圆的影响)离心率对椭圆的影响:e 越大,则c_, b就_, 椭圆越_;反之,e越小, 则c_, b _, 椭圆就越_。扁4 4、离心率、离心率接近于圆越大越小越小越大图形图形标准方程标准方程范围范围_顶点顶点_轴长轴长短轴长短轴长_,长轴长长轴长_对称性对称性对称轴对称轴_,对,对称中心称中心_离心率离心率e_axa且且bybbxb且且ayaA1(a,0)、A2(a,0)B1(0,b)、B2(0,b)A1(0,a)、A2(0,a)B1(b,0)、B2(b,0)2b2ax轴和轴和y轴轴(0,0)同前同前同前同前同前同前椭圆的

7、几何性质椭圆的几何性质例例 求椭圆求椭圆 16 x16 x2 2 + 25y+ 25y2 2 =400 =400的长轴和短轴的长、的长轴和短轴的长、离心率、焦点和顶点坐标离心率、焦点和顶点坐标. .解:把已知方程化成标准方程1452222yx于是,31625,4,5cba因此,椭圆的长轴长和短轴长分别是82,102ba离心率6.053ace焦点坐标分别是)0,3(),0,3(21FF四个顶点坐标是)4,0(),4,0(),0,5(),0,5(2121BBAA解题的关键:解题的关键:1、将椭圆方程转化为标准方程、将椭圆方程转化为标准方程 2、确定焦点的位置和长轴的位置、确定焦点的位置和长轴的位置焦点的位置焦点的位置焦点在焦点在x轴上轴上焦点在焦点在y轴上轴上范围范围_顶点顶点_轴长轴长短轴长短轴长_,长轴长,长轴长_焦点焦点_焦距焦距|F1F2|_对称性对称性对称轴对称轴_,对称中心,对称中心_离心率离心率e_axa且且bybbxb且且ayaA1(a,0)、A2(a,0)B1(0,b)、B2(0,b)A1(0,a)、A2(0,a)B1(b,0)、B2(b,0)2b2aF1(c,0)、F2(c,0)F1(0,c)、F2(0,c)2cx轴和轴和y轴轴(0,0)三、小结三、小结四、作业四、作业: :课本42页1.2.3.


文档来源:https://www.renrendoc.com/paper/212533697.html

文档标签:

下载地址