材料力学(刘鸿文)第五章弯曲应力



《材料力学(刘鸿文)第五章弯曲应力》由会员分享,可在线阅读,更多相关《材料力学(刘鸿文)第五章弯曲应力(160页珍藏版)》请在文档大全上搜索。
1、伽利略伽利略 Galilei (1564-1642)此结论是否正确?此结论是否正确?回顾与比较内力内力AF应力公式及分布规律应力公式及分布规律PITFAyFSM?均匀分布均匀分布线形分布线形分布5-2 5-2 纯弯曲时的正应力纯弯曲时的正应力5-3 5-3 横力弯曲时的正应力横力弯曲时的正应力 强度条件强度条件5-4 5-4 弯曲切应力弯曲切应力5-6 5-6 提高梁强度的措施提高梁强度的措施5-1 5-1 纯弯曲纯弯曲一、纯弯曲一、纯弯曲梁段梁段CDCD上,只有弯矩,没有剪力上,只有弯矩,没有剪力梁段梁段ACAC和和BDBD上,既有弯矩,又有剪力上,既有弯矩,又有剪力5-1 5-1 纯弯曲纯
2、弯曲纯弯曲纯弯曲横力弯曲横力弯曲FsMFaFaFF纯弯曲实例纯弯曲实例5-2 纯弯曲时的正应力纯弯曲时的正应力1、变形几何关系、变形几何关系2、物理关系、物理关系3、静力学关系、静力学关系纯弯曲的内力纯弯曲的内力剪力剪力Fs=0横截面上没有切应力横截面上没有切应力只有正应力。只有正应力。弯曲正应力的弯曲正应力的分布规律分布规律和和计算公式计算公式1、变形几何关系、变形几何关系(一)实验观察现象:(一)实验观察现象:施加一对正弯矩,观察变形施加一对正弯矩,观察变形观察到纵向线与横向线有何变化?观察到纵向线与横向线有何变化?纵向线纵向线由直线由直线曲线曲线横向线横向线由直线由直线直线直线相对旋转一
3、个角度后,相对旋转一个角度后,仍然与纵向弧线垂直。仍然与纵向弧线垂直。变化的是:变化的是:1 1、纵向线的长度、纵向线的长度2 2、两横截面的夹角、两横截面的夹角各纵向线的长度还相等吗?各纵向线的长度还相等吗?各横向线之间依然平行吗?各横向线之间依然平行吗?3 3、横截面的宽度、横截面的宽度横截面绕某一轴线发生了偏转。横截面绕某一轴线发生了偏转。(二)提出假设:(二)提出假设:1、平面假设:、平面假设:变形前为平面的横截面变形后仍保持为平面;变形前为平面的横截面变形后仍保持为平面;于于16951695年提出梁弯曲的平面假设年提出梁弯曲的平面假设瑞士科学家瑞士科学家Jacob.贝努力贝努力纵向纤
4、维之间没有相互挤压,纵向纤维之间没有相互挤压,2、假设:、假设:观察纵向纤维之间有无相互作用力观察纵向纤维之间有无相互作用力各纵向纤维只是发生了简单的轴向拉伸或压缩。各纵向纤维只是发生了简单的轴向拉伸或压缩。凹入凹入一侧纤维一侧纤维凸出凸出一侧纤维一侧纤维观察纵向纤维的变化观察纵向纤维的变化在正弯矩的作用下,在正弯矩的作用下,偏上的纤维偏上的纤维缩短,缩短,偏下的纤维偏下的纤维伸长。伸长。缩短;缩短;伸长。伸长。纤维长度不变纤维长度不变中性层中性层中性层中性层LL000LL=0=0既不伸长也不缩短既不伸长也不缩短中性轴中性轴中性轴上各点中性轴上各点=0各横截面绕各横截面绕 中性轴发生偏转。中性
5、轴发生偏转。中性轴的位置中性轴的位置过截面形心过截面形心中性轴的特点:中性轴的特点:平面弯曲时梁横截面上的中性轴平面弯曲时梁横截面上的中性轴它与外力作用面垂直;它与外力作用面垂直;中性轴是与外力作用面相垂直的中性轴是与外力作用面相垂直的形心主轴。形心主轴。一定是形心主轴;一定是形心主轴;关于中性层的历史关于中性层的历史1620年,荷兰物理学家、力学家比克门首先发现中性层;年,荷兰物理学家、力学家比克门首先发现中性层;英国科学家胡克于英国科学家胡克于1678年也阐述了同样现象,年也阐述了同样现象,但没有涉及中性轴的位置问题;但没有涉及中性轴的位置问题;法国科学家纳维于法国科学家纳维于1826年,
6、出版年,出版材料力学材料力学讲义,讲义,给出结论:给出结论: 中性轴中性轴 过截面形心。过截面形心。观察建筑用的预制板的特征,并给出合理解释观察建筑用的预制板的特征,并给出合理解释P为什么开孔?为什么开孔?为什么加钢筋?为什么加钢筋?施工中如何安放?施工中如何安放?孔开在何处?孔开在何处?可以在任意位置随便开孔吗?可以在任意位置随便开孔吗?你能解释一下托架开孔合理吗?托架会不会破坏?你能解释一下托架开孔合理吗?托架会不会破坏?(三)理论分析:(三)理论分析:y y的物理意义的物理意义纵向纤维到中性层的距离;纵向纤维到中性层的距离;点到中性轴的距离。点到中性轴的距离。zy两直线间的距离两直线间的
7、距离公式推导公式推导线应变的变化规律线应变的变化规律与纤维到中性层的距离成正比。与纤维到中性层的距离成正比。从横截面上看:从横截面上看: 点离开中性轴越远,点离开中性轴越远,该点的线应变越大。该点的线应变越大。2、物理关系、物理关系虎克定律虎克定律EyE弯曲正应力的分布规律弯曲正应力的分布规律a、与点到中性轴的距离成正比;、与点到中性轴的距离成正比;c、正弯矩作用下,、正弯矩作用下,上压下拉;上压下拉;当当 5的细长梁,的细长梁,用纯弯曲正应力公式计算横力弯曲正应力,用纯弯曲正应力公式计算横力弯曲正应力,误差误差2%满足工程中所需要的精度。满足工程中所需要的精度。zIMymaxmax弯曲正应力
8、公式适用范围弯曲正应力公式适用范围弯曲正应力公式弯曲正应力公式 ZIMy1 1、纯弯曲或细长梁的横力弯曲、纯弯曲或细长梁的横力弯曲; ;2 2、横截面惯性积、横截面惯性积 I IYZYZ=0;=0;3 3、弹性变形阶段、弹性变形阶段; ; 推导弯曲正应力计算公式的方法总结推导弯曲正应力计算公式的方法总结(1 1)理想模型法:)理想模型法:纯弯曲(剪力为零,弯矩为常数)纯弯曲(剪力为零,弯矩为常数)(2 2)“实验实验观察观察假设假设” ” :梁弯曲假设梁弯曲假设(3)外力外力内力内力变形几何关系变形几何关系物理关系物理关系静力学关系静力学关系(4 4)三关系法)三关系法积分积分应力合成内应力合
9、成内力力横力弯曲横力弯曲应力法应力法(5 5)数学方法)数学方法注意注意(1 1)计算正应力时,必须清楚所求的是)计算正应力时,必须清楚所求的是哪个截面哪个截面上上的应力,的应力,(3 3)特别注意正应力)特别注意正应力沿高度呈线性分布沿高度呈线性分布;从而确定该截面上的从而确定该截面上的弯矩弯矩及该截面对中性轴的及该截面对中性轴的惯性矩;惯性矩;(2)必须清楚所求的是该截面上)必须清楚所求的是该截面上哪一点哪一点的正应力,的正应力,(4)中性轴中性轴上正应力上正应力为零为零,并确定该并确定该点到中性轴的距离点到中性轴的距离,而在梁的上下边缘处分别是最大拉应力和最大压应力。而在梁的上下边缘处分
10、别是最大拉应力和最大压应力。以及该点处以及该点处应力的符号应力的符号(6 6)熟记矩形、圆形截面对中性轴的惯性矩的计算式。)熟记矩形、圆形截面对中性轴的惯性矩的计算式。(5 5)梁在中性轴的两侧分别受拉或受压)梁在中性轴的两侧分别受拉或受压; ;注意注意正应力的正正应力的正 负号(拉或压)可根据负号(拉或压)可根据弯矩的正负弯矩的正负及及梁的变形状态梁的变形状态来来 确定。确定。作弯矩图,寻找最大弯矩的截面作弯矩图,寻找最大弯矩的截面分析:分析:非对称截面,非对称截面,例例1 T1 T型截面铸铁梁,截面尺寸如图。型截面铸铁梁,截面尺寸如图。求最大拉应力、最大压应力。求最大拉应力、最大压应力。6
11、47.64 10 mzI计算最大拉应力、最大压应力计算最大拉应力、最大压应力zc52889KN1m1m4KN1mACB要寻找中性轴位置;要寻找中性轴位置;(2 2)计算应力:)计算应力:33,max64 1052 1027.2MPa7.64 10t33,max64 1088 1046.1MPa7.64 10c(1 1)求支反力,作弯矩图)求支反力,作弯矩图B B截面应力分布截面应力分布9KN1m1m4KN1mACBFAFBFA=2.5KN2.5KNm4KNmMzIMy应用公式应用公式zc5288(3 3)结论)结论MPa1 .46max,cC C截面应力计算截面应力计算33,max62.5 1