1. 首页
  2. 文档大全

第十四章-结构动力学课件(配套李廉锟教材).

上传者:2****5 2022-06-17 12:26:10上传 PPT文件 7.14MB
第十四章-结构动力学课件(配套李廉锟教材)._第1页 第十四章-结构动力学课件(配套李廉锟教材)._第2页 第十四章-结构动力学课件(配套李廉锟教材)._第3页

《第十四章-结构动力学课件(配套李廉锟教材).》由会员分享,可在线阅读,更多相关《第十四章-结构动力学课件(配套李廉锟教材).(84页珍藏版)》请在文档大全上搜索。

1、 13.1.1 13.1.1 动力计算的特点动力计算的特点13.1 13.1 动力计算的特点和动力自由度动力计算的特点和动力自由度 13.1.2 13.1.2 动力荷载的分类动力荷载的分类 13.1.3 13.1.3 动力计算的自由度动力计算的自由度13.1.1 13.1.1 动力计算的特点动力计算的特点 结构动力学:结构动力学: 研究结构在研究结构在动力荷载动力荷载作用下的作用下的动力反应。动力反应。(1 1)地震现场录像)地震现场录像(2 2)地震振动台实验录像)地震振动台实验录像例如地震荷载:例如地震荷载:动力荷载:荷载的动力荷载:荷载的大小、方向、作用位置大小、方向、作用位置 随时间而

2、变化。随时间而变化。(1 1)TacomaTacoma大桥风毁录像大桥风毁录像(2 2)南浦大桥风洞实验录像)南浦大桥风洞实验录像例如风荷载:例如风荷载:13.1.1 13.1.1 动力计算的特点动力计算的特点荷载的变化周期是结构自振周期荷载的变化周期是结构自振周期5 5倍以上,则可看成静荷载。倍以上,则可看成静荷载。用于教学演示的小型振动台,铝质和有机玻璃模型用于教学演示的小型振动台,铝质和有机玻璃模型用于教学演示的用于教学演示的小型振动台,小型振动台,铝质和有机玻璃模型铝质和有机玻璃模型铝质模型的自由铝质模型的自由振动记录振动记录有机玻璃模型的有机玻璃模型的自由振动记录自由振动记录用于教学

3、演示的用于教学演示的小型振动台,小型振动台,铝质和有机玻璃模型铝质和有机玻璃模型有机玻璃模型的有机玻璃模型的自由振动记录自由振动记录铝质模型的自由铝质模型的自由振动记录振动记录动力计算与静力计算的区别:动力计算与静力计算的区别:加速度:加速度: 可否忽略可否忽略 动力计算的内容:动力计算的内容:1)结构本身的动力特性:自振频率、阻尼、振型自振频率、阻尼、振型2)荷载的变化规律及其动力反应动力反应 (自由振动) (受迫振动)1)牛顿运动定律2)惯性力 动静法动静法(达朗伯原理)特点:考虑惯性力,形式上瞬间的动平衡动平衡!建立微分方程,, ,y y y 13.1.1 13.1.1 动力计算的特点动

4、力计算的特点 如何考虑如何考虑13.1.2 13.1.2 动力荷载的分类动力荷载的分类1 1)周期荷载)周期荷载2 2)冲击荷载)冲击荷载3 3)随机荷载)随机荷载P(t )tPt简谐荷载简谐荷载P(t)ttrPP(t)ttrPP(t)tPP(t)t爆炸荷载爆炸荷载1 1爆炸荷载爆炸荷载2 2突加荷载突加荷载地震波地震波一般周期荷载一般周期荷载13.1.2 13.1.2 动力荷载的分类动力荷载的分类 建筑抗震设计原则建筑抗震设计原则 结构结构“小震不破坏,中震可修复,大震不倒塌。小震不破坏,中震可修复,大震不倒塌。” y13.1.3 13.1.3 动力计算的自由度动力计算的自由度确定全部质量的

5、位置,所需独立几何参数的个数。 动力自由度:动力自由度:这是因为:惯性力取决于质量分布质量分布及其运动方向运动方向。mE、A、I、 R体系振动自由度为?无限自由度无限自由度( (忽略忽略 ) )m三个自由度三个自由度忽略轴向变形忽略转动惯量自由度为?单自由度单自由度m0,0mEAR例:简支梁:例:简支梁:m13.1.3 13.1.3 动力计算的自由度动力计算的自由度集中质量法:集中质量法: 将分布质量集中到某些位置。无限无限 有限有限例例1 1:2EIEIEIy(a)(a)单自由度单自由度y1y2(b)(b)两个自由度两个自由度例例2 2:(t)(c)(c)三个自由度三个自由度( )m x(d

6、)(d)无限自由度无限自由度( , )y x tx13.1.3 13.1.3 动力计算的自由度动力计算的自由度例例3 3:u(t)v(t)例例4 4:确定体系的振动自由度时,一般忽略梁和刚架的轴向变形,和集中质量的惯性矩的影响集中质量法几点注意:集中质量法几点注意: 1)体系动力自由度数不一定等于质量数。一个质点一个质点两个两个DOFDOF两个质点两个质点一个一个DOFDOF两个质点两个质点三个三个DOFDOF 2)体系动力自由度与其超静定次数无关。 3)体系动力自由度决定了结构动力计算的精度。m1m2yxxx13.1.3 13.1.3 动力计算的自由度动力计算的自由度改变改变水平振动时的计算

7、体系水平振动时的计算体系 3 3个自由度个自由度 4 4个自由度个自由度 m1m2m32 2个自由度个自由度 自由度与质量数自由度与质量数 不一定相等不一定相等 y1y2y1y3y2y3y4y1y213.2.1 13.2.1 单自由度体系自由振动微分方程建立单自由度体系自由振动微分方程建立13.2 13.2 单自由度体系的自由振动单自由度体系的自由振动13.2.2 13.2.2 单自由度体系自由振动微分方程解答单自由度体系自由振动微分方程解答13.2.3 13.2.3 结构的自振周期和自振频率结构的自振周期和自振频率13.2.4 13.2.4 阻尼对自由振动的影响阻尼对自由振动的影响一一、自由

8、振动自由振动 (体系在振动过程中没有动荷载的作用,只有惯性力)(体系在振动过程中没有动荷载的作用,只有惯性力) 1.1.自由振动产生原因自由振动产生原因 体系在初始时刻体系在初始时刻(t=0)受到外界的干扰。受到外界的干扰。 静平衡位置静平衡位置m获得初位移获得初位移ym获得初速度获得初速度 y2.2.研究单自由度体系的自由振动重要性研究单自由度体系的自由振动重要性 (1 1)它代表了许多实际工程问题,如水塔、单层厂房等。)它代表了许多实际工程问题,如水塔、单层厂房等。 (2 2)它是分析多自由度体系的基础,包含了许多基本概念。)它是分析多自由度体系的基础,包含了许多基本概念。 自由振动反映了

9、体系的固有动力特性自由振动反映了体系的固有动力特性 自振频率和振型自振频率和振型 13.2.1 13.2.1 单自由度体系自由振动微分方程建立单自由度体系自由振动微分方程建立13.2.1 13.2.1 单自由度体系自由振动微分方程建立单自由度体系自由振动微分方程建立以一悬臂柱为对象:以一悬臂柱为对象:自由振动 初始位移初始速度同时作用y(t)kmymmy 模型模型2 2隔离体隔离体理解理解两模两模型中型中 “k” 含义含义my mky模型模型1 1“弹簧小车弹簧小车”kyky建立自由振动的微分方程建立自由振动的微分方程: : 两种方法: 1)刚度法 力的平衡力的平衡2)柔度法 位移协调位移协调

10、 1 1k1P 建立方程1 1)刚度法:)刚度法:以质量为隔离体以质量为隔离体00Xmyky1k模型模型2 2模型模型1 1刚度系数 k柔度系数 概念理解概念理解 my kyy13.2.1 13.2.1 单自由度体系自由振动微分方程建立单自由度体系自由振动微分方程建立建立自由振动的微分方程建立自由振动的微分方程: : 两种方法: 1)刚度法 力的平衡力的平衡2)柔度法 位移协调位移协调 建立方程2 2)柔度法:)柔度法:M点位移ykymy ky13.2.1 13.2.1 单自由度体系自由振动微分方程建立单自由度体系自由振动微分方程建立ymFi ymFyi 0 yym 惯性力建立方程建立方程1

11、1)刚度法:)刚度法:mykyW0y 0kymyWstdyyy()()0stdstdk yym yyW0ststkyWy0ddkymy0kymy以质量为隔离体以质量为隔离体my 13.2.1 13.2.1 单自由度体系自由振动微分方程建立单自由度体系自由振动微分方程建立建立方程建立方程2 2)柔度法:)柔度法:mkymy Wstdyyy()stdstdstyym yyy 0sty 0ymy以梁为对象建立位移方程以梁为对象建立位移方程( )y tkykymyW ymyW stWyddymy ky13.2.1 13.2.1 单自由度体系自由振动微分方程建立单自由度体系自由振动微分方程建立(1 1)


文档来源:https://www.renrendoc.com/paper/212628572.html

文档标签:

下载地址