材料力学(刘鸿文)第四章-弯曲内力



《材料力学(刘鸿文)第四章-弯曲内力》由会员分享,可在线阅读,更多相关《材料力学(刘鸿文)第四章-弯曲内力(120页珍藏版)》请在文档大全上搜索。
1、4-1 4-1 弯曲的概念和实例弯曲的概念和实例4-2 4-2 受弯杆件的简化受弯杆件的简化4-3 4-3 剪力和弯矩剪力和弯矩4-4 4-4 剪力方程和弯矩方程、剪力图和弯矩图剪力方程和弯矩方程、剪力图和弯矩图4-5 4-5 载荷集度、剪力和弯矩之间的关系载荷集度、剪力和弯矩之间的关系4-1 4-1 弯曲的概念和实例弯曲的概念和实例工工 程程 实实 例例车间桁吊大梁车间桁吊大梁镗刀杆镗刀杆工工 程程 实实 例例车削工件车削工件工工 程程 实实 例例工工 程程 实实 例例火车轮轴火车轮轴工工 程程 实实 例例弯曲变形的弯曲变形的受力特点受力特点外力的作用线与杆件的轴外力的作用线与杆件的轴线垂直
2、;线垂直;以弯曲变形为主的杆件。以弯曲变形为主的杆件。弯曲变形的弯曲变形的变形特点变形特点轴线由直线变为曲线;轴线由直线变为曲线;梁:梁:平面弯曲平面弯曲条件:条件:所有的载荷作用在纵向对称面内;所有的载荷作用在纵向对称面内;结果:结果:梁的轴线梁的轴线 是纵向对称面内的一条是纵向对称面内的一条平面曲线。平面曲线。平面弯曲的条件平面弯曲的条件具有纵向对称面;具有纵向对称面;外力都作用在纵向对称面内;外力都作用在纵向对称面内;梁的轴线变成对称面内的一条平面曲线。梁的轴线变成对称面内的一条平面曲线。对称弯曲对称弯曲构件的几何形状、构件的几何形状、材料性能、材料性能、外力外力均对称于杆件的纵向对称面
3、;均对称于杆件的纵向对称面;对称弯曲一定是平面弯曲;对称弯曲一定是平面弯曲; 但平面弯曲不一定是对称弯曲但平面弯曲不一定是对称弯曲常见构件的纵向对称面常见构件的纵向对称面集中载荷集中载荷分布载荷分布载荷集中力偶集中力偶4-2 4-2 受弯杆的简化受弯杆的简化1、梁本身的简化、梁本身的简化以轴线代替;以轴线代替;2、载荷的简化、载荷的简化集中载荷与均布载荷实例集中载荷与均布载荷实例分布载荷实例分布载荷实例线形分布载荷;线形分布载荷;力偶实例力偶实例力偶矩矢:力偶矩矢: 与杆件的轴线垂直。与杆件的轴线垂直。固定铰支座固定铰支座3、支座简化、支座简化活动铰支座活动铰支座支座简化支座简化固定端固定端支
4、座简化支座简化4、梁的基本形式、梁的基本形式简支梁简支梁钢轨约束钢轨约束外伸梁外伸梁梁的基本形式梁的基本形式悬臂梁悬臂梁梁的基本形式梁的基本形式简支梁简支梁外伸梁外伸梁悬臂梁悬臂梁静定梁的基本形式静定梁的基本形式FNFSM 0 xF0NF 0yF1ASFFFy 0cM)(1axFxFMAy4-3 4-3 剪力和弯矩剪力和弯矩FAyFAyFBy一、弯曲变形时横截面的内力一、弯曲变形时横截面的内力与横截面相切的分布内力系的合力;与横截面相切的分布内力系的合力;与横截面垂直的分布内力系的合力偶矩。与横截面垂直的分布内力系的合力偶矩。FByMFNFS FS剪力:剪力: M弯矩:弯矩:弯曲变形时横截面的
5、内力弯曲变形时横截面的内力/A轴线轴线M二、内力的大小二、内力的大小FSMFAy 0yF1ASFFFyFByMFS 0yFyFFFFA32S1、剪力大小、剪力大小= 截面一侧所有外力的代数和。截面一侧所有外力的代数和。内力的大小内力的大小FSMFAyFByMFS2、弯矩大小、弯矩大小= 截面一侧所有外力对截面一侧所有外力对 0cM)(1axFxFMAy 0cM)()()(21FMFMFMMCCByC求内力的截面形心之矩的求内力的截面形心之矩的代数和。代数和。FAyFNFSMFByFNFSM剪力对所取的一段梁上任意一点的矩为剪力对所取的一段梁上任意一点的矩为顺时针顺时针转向时,转向时,剪力剪力为
6、正;为正;+_ 左上左上三、内力的符号三、内力的符号1、剪力的符号约定、剪力的符号约定实用的方向约定实用的方向约定右下右下的外力产生正剪力;的外力产生正剪力;使梁呈使梁呈下凸时下凸时弯矩为弯矩为正;正;+_2、弯矩的符号约定、弯矩的符号约定 左顺左顺弯矩符号的实用约定弯矩符号的实用约定FAyFSMFByFSM所有向上所有向上的外力的外力 产生正弯矩;产生正弯矩;右逆的右逆的外力偶产生正弯矩;外力偶产生正弯矩;1. 1. 确定支反力确定支反力FAyFBy 0yFFFFByAy2 0AMaFFaaFBy233FFBy35FFAy2. 用截面法求内力FSMEFFFAyS22223aFaFMAyE3F
7、23FaFAy练习:计算下列各图中特殊截面上的内力练习:计算下列各图中特殊截面上的内力PPaaaqaaMqa2P=2qaqaaq2aaM=qa2P=qaaaa练习:计算下列各图中特殊截面上的内力练习:计算下列各图中特殊截面上的内力4-4 4-4 剪力方程和弯矩方程、剪力图和弯矩剪力方程和弯矩方程、剪力图和弯矩ql写内力方程,并作内力图写内力方程,并作内力图x xM xFSqx qxxFS 2/2qxxMlx 0lx 0一、内力方程:一、内力方程: 任意截面处的内力表示为截面位置的函数;任意截面处的内力表示为截面位置的函数;例例1、悬臂梁上作用均布载荷、悬臂梁上作用均布载荷 lxqxxFS0 l
8、xqxxM02/2FSxMxqlFSmax2/2maxqlM二、内力图二、内力图qlql2/2ql危险截面位置危险截面位置固定端截面处;固定端截面处;18851885年,俄国人别斯帕罗夫开年,俄国人别斯帕罗夫开始使用弯矩图;始使用弯矩图;被认为是历史上第一个使被认为是历史上第一个使用弯矩图的人用弯矩图的人a 建立坐标系建立坐标系b 确定控制截面确定控制截面c 作图作图仔细观察内力图的特点仔细观察内力图的特点FCabl写内力方程,并画内力写内力方程,并画内力图图例例2、简支梁受集中载荷作用、简支梁受集中载荷作用(1)(1)确定约束力确定约束力FBYFAY0AMF FAyAyFb/l0BMF FB
9、yByFa/lx1 axFxFAyS110 axxFxMAy1110AC段段FAYx1x2l-x2FBYCB段段 lxaFxFByS22 lxaxlFxMBy222(2)(2)写内力方程写内力方程FSxMxAC axlFbxFS110/ axlFbxxM1110/CB lxalFaxFS22/ lxalxlFaxM222/(3). (3). 作内力图作内力图FC危险截面位置危险截面位置集中力作用点的左或右侧截面集中力作用点的左或右侧截面a 建立坐标系建立坐标系b 确定控制截面确定控制截面c 作图作图lFb/lFa/lFab/仔细观察内力图的特点仔细观察内力图的特点外力规律发生变化的截面外力规律
10、发生变化的截面控制截面:控制截面:集中力作用点、集中力作用点、外力偶作用面、外力偶作用面、分布载荷的起点、分布载荷的起点、终点等。终点等。写内力方程时注意事项写内力方程时注意事项3 3、x x截面处必须是任意截面;截面处必须是任意截面;4 4、x x截面处必须是远离外力的作用点;截面处必须是远离外力的作用点;5 5、写出、写出x x截面处的内力就是内力方程,截面处的内力就是内力方程,同时确定定义域。同时确定定义域。1 1、必须、必须分段分段列写梁的剪力方程和弯矩方程;列写梁的剪力方程和弯矩方程;2 2、各段的分界点为各段梁的、各段的分界点为各段梁的控制截面控制截面。FSxMxlql2/2qlF
11、SxMxlFb /lFa /lFab /FC总结总结11 1、简支梁的两端、简支梁的两端 悬臂梁的自由端:悬臂梁的自由端:剪力的大小剪力的大小 =集中力的大小;集中力的大小;剪力的方向:剪力的方向:左上右下左上右下如果没有外力偶矩时,如果没有外力偶矩时,弯矩恒等于零;弯矩恒等于零;弯矩大小弯矩大小有外力偶矩时,有外力偶矩时, 弯矩外力偶矩的大小弯矩外力偶矩的大小弯矩方向:弯矩方向:满足左顺右逆。满足左顺右逆。FSxMxlql2/2ql总结总结22 2、有均布载荷的一段梁内、有均布载荷的一段梁内剪力图剪力图 斜直线;斜直线;曲线,曲线,弯矩图弯矩图且均布载荷向上且均布载荷向上剪力图上升;剪力图上