1. 首页
  2. 文档大全

材料力学5-弯曲内力

上传者:20****2 2022-06-21 14:20:06上传 PPT文件 1.60MB
材料力学5-弯曲内力_第1页 材料力学5-弯曲内力_第2页 材料力学5-弯曲内力_第3页

《材料力学5-弯曲内力》由会员分享,可在线阅读,更多相关《材料力学5-弯曲内力(45页珍藏版)》请在文档大全上搜索。

1、5-5 5-5 按叠加原理作弯矩图按叠加原理作弯矩图第五章第五章 梁的内力梁的内力5-1 5-1 平面弯曲的概念及工程实例平面弯曲的概念及工程实例5-2 5-2 静定梁的分类(三种基本形式)静定梁的分类(三种基本形式)5-3 5-3 剪力方程与弯矩方程剪力方程与弯矩方程5-4 5-4 剪力、弯矩与分布荷载间的关系及应用剪力、弯矩与分布荷载间的关系及应用一、弯曲实例一、弯曲实例工厂厂房的天车大梁:工厂厂房的天车大梁:5-1 5-1 平面弯曲的概念及工程实例平面弯曲的概念及工程实例FF火车的轮轴:火车的轮轴:FFFF楼房的横梁:楼房的横梁:阳台的挑梁:阳台的挑梁:二、弯曲的概念:二、弯曲的概念:受

2、力特点受力特点作用于杆件上的作用于杆件上的外力外力都都垂直垂直于杆的于杆的轴线轴线。变形特点变形特点杆轴线由杆轴线由直线直线变为一条平面的变为一条平面的曲线曲线。 主要产生弯曲变形的杆主要产生弯曲变形的杆- - 梁梁。三、平面弯曲的概念:三、平面弯曲的概念:qPMARBN受力特点受力特点作用于杆件上的外力都垂直于杆的轴线,且都在作用于杆件上的外力都垂直于杆的轴线,且都在 梁的纵向对称平面内(通过或平行形心主轴上且过梁的纵向对称平面内(通过或平行形心主轴上且过 弯曲中心)弯曲中心)。变形特点变形特点杆的轴线在梁的纵向对称面内由直线变为一条平杆的轴线在梁的纵向对称面内由直线变为一条平 面曲线。面曲

3、线。纵向对称面纵向对称面MF1F2q平面弯曲平面弯曲5-2 5-2 静定梁的分类(三种基本形式)静定梁的分类(三种基本形式)M 集中力偶集中力偶q(x) 分布力分布力1 1、悬臂梁:、悬臂梁:2 2、简支梁:、简支梁:3 3、外伸梁:、外伸梁: 集中力集中力Fq 均布力均布力LLLL(L称为梁的跨长)称为梁的跨长)一、弯曲内力的确定(截面法):一、弯曲内力的确定(截面法):例例已知:如图,已知:如图,F,a,l。 求:距求:距A端端 x 处截面上内力。处截面上内力。FAYFAXFBYFABFalAB解:解:求外力(支座反力)求外力(支座反力)0 , 0AXFXFAX =0 以后可省略不求以后可

4、省略不求0 , 0FalFmBYA0F , 0BYAYFFYlalFlFaFAYBY)(F ,5-3 5-3 剪力方程与弯矩方程剪力方程与弯矩方程ABFFAYFAXFBYmmx求内力求内力FsMMFs 弯曲构件内力:弯曲构件内力:剪力,剪力,弯矩。弯矩。FAYACFBYFClalFFFAY)( s , 0Y. 0sAYFFxlalFxFMAY)( , 0Cm. 0 xFMAY研究对象:研究对象:m - m 截面的左段:截面的左段:若研究对象取若研究对象取m - m 截面的右段:截面的右段: , 0Y. 0BYsFFF , 0Cm. 0)()(MxaFxlFBY,)(lalFFsxlalFM)(

5、 sFMABFFAYFAXFBYmmxFsMMFs1. 弯矩:弯矩:M 构件受弯时,横截面上构件受弯时,横截面上存在垂直于截面的内力偶矩存在垂直于截面的内力偶矩(弯矩)。(弯矩)。AFAYCFBYFC2. 剪力:剪力: Fs 构件受弯时,横截面上存在构件受弯时,横截面上存在平行于截面的内力(剪力)。平行于截面的内力(剪力)。二、弯曲内力的正负号规定二、弯曲内力的正负号规定: : 剪力剪力Fs : : 弯矩弯矩M:Fs(+)Fs(+)Fs()Fs()M(+)M(+)M()M()1.2kN/m0.8kNAB1.5m 1.5m3m2m1.5m1122 例例 :梁梁1-11-1、2-22-2截面处的内

6、力。截面处的内力。解解:(:(1)确定支座反力)确定支座反力RARB032 . 18 . 0, 0BARRY)(9 . 2),(5 . 1kNRkNRBA8 . 01AsRF(2) 1(2) 1-1-1截面左段右侧截面截面左段右侧截面:065 . 48 . 05 . 132 . 1, 0ABRM5 . 08 . 021ARM8 . 05 . 1)(7 . 0kN5 . 08 . 025 . 1)(6 . 2mkN 2 2-2-2截面右段左侧截面:截面右段左侧截面:9 . 25 . 12 . 12sF)( 1 . 1kN75. 05 . 12 . 15 . 12BRM75. 05 . 12 .

7、15 . 19 . 2)(0 . 3mkNRA1sF1M8 . 02sF2MBRq三、剪力方程、弯矩方程三、剪力方程、弯矩方程: 注意注意: 不能用一个函数表不能用一个函数表达的要分段,分段点为:达的要分段,分段点为:集中力集中力作用点、集中力偶作用点、分布作用点、集中力偶作用点、分布力的起点、终点。力的起点、终点。)(SSxFF 剪力方程剪力方程)(xMM 弯矩方程弯矩方程反映梁的横截面上的剪力和弯反映梁的横截面上的剪力和弯矩随截面位置变化的函数式矩随截面位置变化的函数式 显示剪力和弯矩随截面位移的显示剪力和弯矩随截面位移的变化规律的图形则分别称为变化规律的图形则分别称为剪力剪力图图和和弯矩

8、图弯矩图。LqAB,)(qxxFs,21)(2qxxM)0(lx )0(lx xsFx( (- -) )Mxql25 . 0 qlF(x)xFFFxFAYs)(解解:求支反力求支反力)( )(LxFMxFxMAAY写出内力方程写出内力方程FL MFFAAY ; 根据方程画内力图根据方程画内力图 例例 列出梁内力方程并画出内力图。列出梁内力方程并画出内力图。FAB)0(lx )0(lx FAYMALxxM(x)FL注意:弯矩图中正的弯矩值注意:弯矩图中正的弯矩值绘在绘在x x轴的下方轴的下方( (即弯矩值绘即弯矩值绘在弯曲时梁的受拉侧在弯曲时梁的受拉侧) )。例例 图示简支梁受集度为图示简支梁受

9、集度为q的满布荷载作用。试作梁的剪力图的满布荷载作用。试作梁的剪力图 和弯矩图。和弯矩图。解:解:1 1、求支反力、求支反力2qlFFBA2 2、列剪力方程和弯矩方程、列剪力方程和弯矩方程 qxqlqxFxFA2S 2222qxqlxxqxxFxMAxFBFAFAM(x)FS(x)xAqBlAqql 2FS ql28l/2M 3 3、作剪力图和弯矩图、作剪力图和弯矩图2max,SqlF82maxqlM 222qxqlxxM qxqlxF2SBlAq* 载荷对称、结构对称则剪力图反对称,弯矩图对称* 剪力为零的截面弯矩有极值。例例 图示简支梁受集中荷载图示简支梁受集中荷载F作用。试作梁的剪力图作

10、用。试作梁的剪力图和弯矩图和弯矩图。解:解:1、求支反力求支反力lFbFAlFaFB2 2、列剪力方程和弯矩方程、列剪力方程和弯矩方程 需分两段列出需分两段列出BFBFAxlAF abCAC段段CB段段 lxalFaFxFBS axlFbxF0S lxaxllFaxlFxMB)( axxlFbxM0FAxAM(x)FS(x)FBBFS(x)M(x)BFBFAxlAF abC3 3、作剪力图和弯矩图、作剪力图和弯矩图xllFaxM)(2 lFbxFS1 xlFbxM1 lFaxFS2FS FblxFblMxFablBFBFAxlAF abCFS FblxFblMxFabl为极大值。为极大值。时,

11、时,42/maxFlMlba* 在 集中力F 作用处,剪力图有突变,突变值为集中力的大小;弯矩图有转折xlAF abC例例 图示简支梁在图示简支梁在C点受矩为点受矩为Me 的集中力偶作用。试的集中力偶作用。试作梁的剪力图和弯矩图。作梁的剪力图和弯矩图。解解: : 1、求支反力、求支反力 lMFAe lMFBe 0AM0elFMAMe FA FBBlACab2、 列剪力方程和弯矩方程列剪力方程和弯矩方程剪力方程无需分段:剪力方程无需分段: lxlMFxFA0eS弯矩方程弯矩方程两段:两段:AC段:段:CB段:段: xlMxFxMAe xllMMxFxMAeelxaax 0FA FBxAFAM(x


文档来源:https://www.renrendoc.com/paper/212632395.html

文档标签:

下载地址